关闭

为什么需要OLEDB For DataMining?

679人阅读 评论(0) 收藏 举报

虽然数据挖掘中的一些技术在20世纪60年代开始出现,但是数据挖掘的概念是最近出现的。OLE DB for Data Mining (OLE DB for DM)应用编程接口在20007月出现,之前的数据挖掘市场是非常零散的,就像20世纪70年代关系数据库之前的数据库市场。没有挖掘模型、模型训练和预测的标准概念。对于许多人来说,数据挖掘就是一组算法的集合,就像早些时候人们认为数据库只不过是存储数据的分层数据结构。数据挖掘作为一种高端工具,不仅适用于研究统计学和机器学习的博士们,而且适用于数据库开发人员。

       20世纪90年代,市场上存在着许多数据挖掘软件。这些软件的厂商(ISV)都有不同的创建数据挖掘应用程序的方法。每个数据挖掘软件都包括自己的算法,自己的模型存储格式,自己的数据清理工具,甚至自己的报告工具。数据挖掘是一个独立的软件包,并不是数据仓库的一部分。

       除了缺少数据挖掘的标准概念,还缺少标准的应用编程接口。将数据挖掘的结果同用户的应用程序集成起来是非常困难的。许多数据挖掘软件没有应用编程接口。商业软件中如果要集成数据挖掘的特性是件非常痛苦的事情。有些数据挖掘软件生成决策树、神经网络的源程序。这些源程序包括模型的训练参数,比如神经网络的系数。为了部署挖掘模型,需要编译源代码,与用户应用程序连接。因此,数据挖掘项目都由厂商封锁。如果你在数据挖掘项目中选择了产品A,后来发现在时间序列算法上产品B更好,那就不得不从头开始项目,因为集成到用户应用程序时,不同的产品有不同的数据转换工具、模型存储格式和应用编程接口。

       OLE DB for Data Mining的目标是定义数据挖掘的通用概念和通用的应用编程接口,与数据库领域的SQL类似。这些应用编程接口很容易被数据库开发人员理解,而不仅仅适用于那些研究统计学的博士们。19997月,OLE DB for Data Mining被微软和许多数据挖掘厂商共同提出,一年后在微软网站上发布1.0版本。OLE DB for Data Mining应用编程接口定义了通用的数据挖掘概念,比如挖掘模型、模型训练、模型内容、模型预测等等。OLE DB for Data Mining还定义了数据挖掘查询语言。这种查询语言的语法与SQL类似。随着标准的发布,一些数据挖掘软件厂商,包括Microsoft, Megaputer, Angoss, KXEN, DBMiner,都开发了它们的OLE DB for Data Mining 提供者。

       通过OLE DB或者ADO,用户应用程序可以连接不同的数据挖掘软件提供者,如下图所示。每个OLE DB for Data Mining 提供者都有数据挖掘算法集。它们的算法可以通过OLE DB访问各种格式的数据源。数据源的存储格式可以是关系型数据库、OLAP立方体、文本文件和email文档等。  
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:131194次
    • 积分:1980
    • 等级:
    • 排名:千里之外
    • 原创:55篇
    • 转载:15篇
    • 译文:6篇
    • 评论:20条
    最新评论