基于隐性马尔科夫的英语语音合成系统中的lab文件格式的说明

翻译 2007年09月24日 11:39:00
 
p1^p2-p3+p4=p5@p6_p7
/A:a1_a2_a3 /B:b1_b2_b3@b4_b5&b6_b7#b8_b9$b10_b11!b12_b13;b14_b15|b16
/C:c1+c2+c3 /D:d1_d2 /E:e1+e2@e3+e4&e5+e6#e7+e8 /F:f1_f2
/G:g1_g2 /H:h1=h2@h3=h4|h5 /I:i1_i2 /J:j1+j2-j3
p1
在上一级音位标示的音位标示
p2
上一级的音位标示
p3
当前的音位标示
p4
下一个音位标示
p5
在下一个音位标示之后的标示
p6
当前音位在当前音节中的位置(向前)
p7
当前音位在当前音节中的位置(向后)
a1
上一级音节是否重读(0:否1:是)
a2
上一级音节是否是重音(0:否 1:是)
a3
在上一级音节中音位的个数
b1
当前音节是否重读(0:否1:是)
b2
当前音节是否是重音(0:否1:是)
b3
在当前音节中音位的个数
b4
在当前字中这个音节的位置(向前)
b5
在当前字中这个音节的位置(向后)
b6
在当前短语中这个音节的位置(向前)
b7
在当前短语中这个音节的位置(向后)
b8
在当前短语中当前音节之前所重读的音节的个数
b9
在当前短语中当前音节之后所重读的音节的个数
b10
在当前短语中当前音节之前是重音的音节的个数
b11
在当前短语中当前音节之后是重音的音节的个数
b12
从上一个重读的音节到当前音节中间的音节的个数
b13
从当前音节到下一个重读的音节中间的音节的个数
b14
从上一个重音音节到当前音节中间的音节的个数
b15
从当前音节到下一个重音音节中间的音节的个数
b16
当前音节中元音的名字
c1
下一个音节是否重读(0:否1:是)
c2
下一个音节是否是重音(0:否1:是)
c3
下一个音节中音位的个数
d1
推测上一个单词的词性
d2
上一个单词中音节的个数
e1
推测当前的词性
e2
在当前词中音节的个数
e3
在当前短语中当前单词的位置(向前)
e4
在当前短语中当前单词的位置(向后)
e5
在当前短语中当前单词之前实义词的个数
e6
在当前短语中当前单词之后实义词的个数
e7
从前一个实义词到当前单词中间单词的个数
e8
从当前的单词到下一个实义词中间单词的个数
f1
预测的下一个单词的词性
f2
下一个单词中音节的个数
g1
前一个短语中音节的个数
g2
前一个短语中单词的个数
h1
当前短语中音节的个数
h2
当前短语中单词的个数
h3
在话语中当前短语的位置(向前)
h4
在话语中当前短语的位置(向后)
h5
短语结束的声调的标注
i1
下一个短语中音节的个数
i2
下一个短语中单词的个数
j3
在本句话中音节的个数
j4
在本句话中单词的个数
j5
在本句话中短语的个数
 

相关文章推荐

隐性马尔科夫HMM

  • 2012-04-01 09:37
  • 24KB
  • 下载

【8】机器学习之语音识别:隐马尔科夫模型

马尔可夫模型(Markov Model)是通过寻找事物状态的规律对未来事物状态进行预测的概率模型,在马尔可夫模型中假设当前事物的状态只与之前的n个状态有关。n=1时表示事物当前的状态只与上一个状态有关...

马尔科夫逻辑网系统alchemy

  • 2013-02-27 20:54
  • 3.22MB
  • 下载

隐马尔科夫模型matlab工具箱说明

隐马尔可夫模型(HiddenMarkov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程;是序列数据处理和统计学习的重要模型。其难点是从可观察的参数中确定该过程的隐含参数...

举例说明什么是隐马尔科夫模型(HMM)

from:http://www.gooseeker.com/cn/node/Fuller/2010060701 什么是隐马尔科夫模型(HMM) 维基百科对隐马尔可夫模型的定义:...

隐马尔科夫模型最佳范例

  • 2017-09-09 02:18
  • 401KB
  • 下载

隐马尔科夫模型

1、马尔科夫过程 马尔可夫过程的定义: ⑴设 是一个随机过程,如果在 在 时刻所处的状态为已知时,与它在时刻 之前所处的状态无关,则称具有马尔可夫性。 ⑵设 的状态空间为S,如果对于...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)