基于隐性马尔科夫的英语语音合成系统中的lab文件格式的说明

翻译 2007年09月24日 11:39:00
 
p1^p2-p3+p4=p5@p6_p7
/A:a1_a2_a3 /B:b1_b2_b3@b4_b5&b6_b7#b8_b9$b10_b11!b12_b13;b14_b15|b16
/C:c1+c2+c3 /D:d1_d2 /E:e1+e2@e3+e4&e5+e6#e7+e8 /F:f1_f2
/G:g1_g2 /H:h1=h2@h3=h4|h5 /I:i1_i2 /J:j1+j2-j3
p1
在上一级音位标示的音位标示
p2
上一级的音位标示
p3
当前的音位标示
p4
下一个音位标示
p5
在下一个音位标示之后的标示
p6
当前音位在当前音节中的位置(向前)
p7
当前音位在当前音节中的位置(向后)
a1
上一级音节是否重读(0:否1:是)
a2
上一级音节是否是重音(0:否 1:是)
a3
在上一级音节中音位的个数
b1
当前音节是否重读(0:否1:是)
b2
当前音节是否是重音(0:否1:是)
b3
在当前音节中音位的个数
b4
在当前字中这个音节的位置(向前)
b5
在当前字中这个音节的位置(向后)
b6
在当前短语中这个音节的位置(向前)
b7
在当前短语中这个音节的位置(向后)
b8
在当前短语中当前音节之前所重读的音节的个数
b9
在当前短语中当前音节之后所重读的音节的个数
b10
在当前短语中当前音节之前是重音的音节的个数
b11
在当前短语中当前音节之后是重音的音节的个数
b12
从上一个重读的音节到当前音节中间的音节的个数
b13
从当前音节到下一个重读的音节中间的音节的个数
b14
从上一个重音音节到当前音节中间的音节的个数
b15
从当前音节到下一个重音音节中间的音节的个数
b16
当前音节中元音的名字
c1
下一个音节是否重读(0:否1:是)
c2
下一个音节是否是重音(0:否1:是)
c3
下一个音节中音位的个数
d1
推测上一个单词的词性
d2
上一个单词中音节的个数
e1
推测当前的词性
e2
在当前词中音节的个数
e3
在当前短语中当前单词的位置(向前)
e4
在当前短语中当前单词的位置(向后)
e5
在当前短语中当前单词之前实义词的个数
e6
在当前短语中当前单词之后实义词的个数
e7
从前一个实义词到当前单词中间单词的个数
e8
从当前的单词到下一个实义词中间单词的个数
f1
预测的下一个单词的词性
f2
下一个单词中音节的个数
g1
前一个短语中音节的个数
g2
前一个短语中单词的个数
h1
当前短语中音节的个数
h2
当前短语中单词的个数
h3
在话语中当前短语的位置(向前)
h4
在话语中当前短语的位置(向后)
h5
短语结束的声调的标注
i1
下一个短语中音节的个数
i2
下一个短语中单词的个数
j3
在本句话中音节的个数
j4
在本句话中单词的个数
j5
在本句话中短语的个数
 

隐马尔科夫模型——简介

隐马尔可夫模型简介,参考其它各种文献
  • zb1165048017
  • zb1165048017
  • 2015年09月19日 19:21
  • 1158

【8】机器学习之语音识别:隐马尔科夫模型

马尔可夫模型(Markov Model)是通过寻找事物状态的规律对未来事物状态进行预测的概率模型,在马尔可夫模型中假设当前事物的状态只与之前的n个状态有关。n=1时表示事物当前的状态只与上一个状态有关...
  • u011411283
  • u011411283
  • 2016年06月16日 09:05
  • 3641

隐马尔科夫模型详解

转载请注明地址(http://blog.csdn.net/xinzhangyanxiang/article/details/8522078) 学习概率的时候,大家一定都学过马尔科夫模型吧,当时就觉得...
  • sight_
  • sight_
  • 2015年01月30日 15:24
  • 16745

白话机器学习算法(十六)HMM 隐马尔科夫链

隐马尔科夫链主要是两部分:
  • wangxin110000
  • wangxin110000
  • 2014年04月04日 20:22
  • 3058

【深度剖析HMM(附Python代码)】1.前言及隐马尔科夫链HMM的背景

1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别、文本翻译、序列预测、中文分词等多个领域。虽然近年来,由于RNN等深度学习方法的发展,HMM模型...
  • tostq
  • tostq
  • 2017年04月27日 12:24
  • 2474

语音合成技术及国内外发展现状

一、语音合成技术简介   语音识别和语音合成技术是实现人机语音通信,建立一个有听和讲能力的口语系统所必需的两项关键技术。使电脑具有类似于人一样的说话和听懂人说话的能力,是90年代信息产业的重要竞...
  • hanxueyu666
  • hanxueyu666
  • 2016年08月09日 19:12
  • 2120

【十六】马尔科夫决策过程

介绍了《机器学习》第十六讲的内容,包括了马尔科夫决策过程MDP,以及解决MDP常用的值迭代Value Iteration和政策迭代Policy Iteration过程,以及解决概率估计和迭代过程的方法...
  • knight_wzz
  • knight_wzz
  • 2016年11月04日 20:56
  • 1049

白话机器学习算法(十六)HMM 隐马尔科夫链

http://blog.csdn.net/wangxin110000/article/details/22955885 隐马尔科夫链主要是两部分: 第一部分:与传统马尔科夫过程一样,都...
  • jiabiao1602
  • jiabiao1602
  • 2015年02月13日 10:15
  • 778

马尔科夫模型 Markov Model

http://blog.csdn.net/pipisorry/article/details/46618991生成模式(Generating Patterns)1、确定性模式(Deterministi...
  • pipisorry
  • pipisorry
  • 2015年06月24日 10:34
  • 9741

Merlin:一个开源的神经网络语音合成系统

介绍Merlin语音合成工具包用于基于神经网络的语音合成。该系统将语言特征作为输入,采用神经网络来预测声学特征,然后将声学特征传递到声音合成机(vocoder)以产生语音波形。...
  • lujian1989
  • lujian1989
  • 2017年02月20日 10:30
  • 4157
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:基于隐性马尔科夫的英语语音合成系统中的lab文件格式的说明
举报原因:
原因补充:

(最多只允许输入30个字)