LeetCode 198 House Robber

本文探讨了如何使用动态规划解决不相邻元素最大和问题,通过分析和代码实现,展示了时间复杂度和空间复杂度的优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Credits:
Special thanks to @ifanchu for adding this problem and creating all test cases. Also thanks to @ts for adding additional test cases.

分析

本质:求数组不相邻元素最大和

动态规划(背包问题):设P[i]表示从0~i个房间抢劫的最大收益。

P[i]={nums[i]+P[i2]iP[i1]i

每次迭代只需要P的两个元素,并不需要设数组P。设两个变量为:

take :nums[i] + P[i-2]
nonTake:P[i-1]

代码

时间复杂度是O(n),空间复杂度是O(n)的代码:

    public static int rob2(int[] nums) {

        if (nums.length == 0) {
            return 0;
        }

        if (nums.length == 1) {
            return nums[0];
        }

        int[] P = new int[nums.length];

        P[0] = nums[0];
        P[1] = Math.max(nums[0], nums[1]);

        for (int i = 2; i < nums.length; i++) {
            P[i] = Math.max(nums[i] + P[i - 2], P[i - 1]);
        }

        return P[nums.length - 1];
    }

时间复杂度是O(n),空间复杂度是O(1)的代码:

    public static int rob(int[] nums) {

        int take = 0;
        int nonTake = 0;
        int max = 0;

        for (int i = 0; i < nums.length; i++) {
            take = nums[i] + nonTake;
            nonTake = max;
            max = Math.max(take, nonTake);
        }

        return max;
    }
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值