简单图像处理——傅立叶变换

转载 2015年07月07日 09:02:18

学过信号处理的都应该知道傅立叶变换

把时域上的信号处理为频域上的信号叠加

对于在空间域上的数字图像,我们也能通过傅立叶变换转换为频域类的信号

在实现某些图像处理的时候,频域类的处理比空间域更简单

好啦,我们来看看二维离散信号的傅立叶变换

数字图像的二维离散傅立叶变换所得的结果的频域成分如图所示,左上角是直流成分,变换结果四个角周围对应于低频成分,中央部分对应于高频部分。

为了便于观察,我们常常使直流成分出现在窗口的中央,可采取换位方法,变换后中心为低频,向外是高频

我们来看看具体实例

复制代码
import cv

def FFT(image,flag = 0):
w
= image.width
h
= image.height
iTmp
= cv.CreateImage((w,h),cv.IPL_DEPTH_32F,1)
cv.Convert(image,iTmp)
iMat
= cv.CreateMat(h,w,cv.CV_32FC2)
mFFT
= cv.CreateMat(h,w,cv.CV_32FC2)
for i in range(h):
for j in range(w):
if flag == 0:
num
= -1 if (i+j)%2 == 1 else 1
else:
num
= 1
iMat[i,j]
= (iTmp[i,j]*num,0)
cv.DFT(iMat,mFFT,cv.CV_DXT_FORWARD)
return mFFT

def FImage(mat):
w
= mat.cols
h
= mat.rows
size
= (w,h)
iAdd
= cv.CreateImage(size,cv.IPL_DEPTH_8U,1)
for i in range(h):
for j in range(w):
iAdd[i,j]
= mat[i,j][1]/h + mat[i,j][0]/h
return iAdd

image
= cv.LoadImage('lena.jpg',0)
mAfterFFT
= FFT(image)
mBeginFFT
= FFT(image,1)
iAfter
= FImage(mAfterFFT)
iBegin
= FImage(mBeginFFT)

cv.ShowImage(
'image',image)
cv.ShowImage(
'iAfter',iAfter)
cv.ShowImage(
'iBegin',iBegin)

cv.WaitKey(0)
复制代码
这里我们直接用了OpenCV的DFT算法来做傅立叶变换

我们来看看效果吧

 

中间是没有换位前,后面是换位后

在函数FFT中第二个参数是控制换位的

默认是换位的

按照此式计算,得到的傅立叶变换就是换位后的

 

现在我们来看看得到的频域图到底有什么用吧

在分析图像信号的频率特性时,对于一幅图像,直流分量表示预想的平均灰度,低频分量代表了大面积背景区域和缓慢变化部分,高频部分代表了它的边缘,细节,跳跃部分以及颗粒噪声

 

在前面我们实现了图像在空域的模糊和锐化

其实在频域,我们也能方便的实现图像的锐化和模糊

我们截取频率的低频分量,对其作傅立叶反变换,得到的就是模糊后的图像

我们截取频率的高频分量,对其作傅立叶反变换,得到的就是锐化后的图像

 

我们来编写程序实现

复制代码
import cv

def FFT(image,flag = 0):
w
= image.width
h
= image.height
iTmp
= cv.CreateImage((w,h),cv.IPL_DEPTH_32F,1)
cv.Convert(image,iTmp)
iMat
= cv.CreateMat(h,w,cv.CV_32FC2)
mFFT
= cv.CreateMat(h,w,cv.CV_32FC2)
for i in range(h):
for j in range(w):
if flag == 0:
num
= -1 if (i+j)%2 == 1 else 1
else:
num
= 1
iMat[i,j]
= (iTmp[i,j]*num,0)
cv.DFT(iMat,mFFT,cv.CV_DXT_FORWARD)
return mFFT

def IFFT(mat):
mIFFt
= cv.CreateMat(mat.rows,mat.cols,cv.CV_32FC2)
cv.DFT(mat,mIFFt,cv.CV_DXT_INVERSE)
return mIFFt

def Restore(mat):
w
= mat.cols
h
= mat.rows
size
= (w,h)
iRestore
= cv.CreateImage(size,cv.IPL_DEPTH_8U,1)
for i in range(h):
for j in range(w):
num
= -1 if (i+j)%2 == 1 else 1
iRestore[i,j]
= mat[i,j][0]*num/(w*h)
return iRestore


def FImage(mat):
w
= mat.cols
h
= mat.rows
size
= (w,h)
# iReal = cv.CreateImage(size,cv.IPL_DEPTH_8U,1)
# iIma = cv.CreateImage(size,cv.IPL_DEPTH_8U,1)
iAdd = cv.CreateImage(size,cv.IPL_DEPTH_8U,1)
for i in range(h):
for j in range(w):
# iReal[i,j] = mat[i,j][0]/h
# iIma[i,j] = mat[i,j][1]/h
iAdd[i,j] = mat[i,j][1]/h + mat[i,j][0]/h
return iAdd


def Filter(mat,flag = 0,num = 10):
mFilter
= cv.CreateMat(mat.rows,mat.cols,cv.CV_32FC2)
for i in range(mat.rows):
for j in range(mat.cols):
if flag == 0:
mFilter[i,j]
= (0,0)
else:
mFilter[i,j]
= mat[i,j]
for i in range(mat.rows/2-num,mat.rows/2+num):
for j in range(mat.cols/2-num,mat.cols/2+num):
if flag == 0:
mFilter[i,j]
= mat[i,j]
else:
mFilter[i,j]
= (0,0)
return mFilter

image
= cv.LoadImage('lena.jpg',0)
mFFT
= FFT(image)
mIFFt
= IFFT(mFFT)
iAfter
= FImage(mFFT)
mLP
= Filter(mFFT)
mIFFt1
=IFFT(mLP)
iLP
= FImage(mLP)
iRestore
= Restore(mIFFt1)

mHP
= Filter(mFFT,1)
mIFFt2
= IFFT(mHP)
iHP
= FImage(mHP)
iRestore2
= Restore(mIFFt2)

cv.ShowImage(
'image',image)
cv.ShowImage(
'iAfter',iAfter)
cv.ShowImage(
'iLP',iLP)
cv.ShowImage(
'iHP',iHP)
cv.ShowImage(
'iRestore',iRestore)
cv.ShowImage(
'iRestore2',iRestore2)

cv.WaitKey(0)
复制代码
运行效果如下

我们用一个矩形框,把频域最中心的低频部分过滤出来,反变换得到图像模糊后的样子

把频域最中心的高频部分过滤出来,反变换得到图像锐化后的样子

 

我们来看看一些规则图像的频域图像

 

那个方形和菱形是随手画的,不是很标准,所以有很多干扰

左边是原图

中间的普通的频率变换

右边的是对其进行对数扩展后的结果。在前面的灰度变换中,我们已经讲过了灰度变换


参考资料:

http://blog.sina.com.cn/s/blog_4bdb170b01019atv.html

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/core/discrete_fourier_transform/discrete_fourier_transform.html

http://www.cnblogs.com/xianglan/archive/2010/12/30/1922386.html

 http://www.cnblogs.com/tornadomeet/archive/2012/07/26/2610414.html

http://blog.csdn.net/ubunfans/article/details/24787569

http://blog.csdn.net/lichengyu/article/details/18848281


相关文章推荐

图像处理中的数学原理详解22——快速傅立叶变换算法FFT

傅立叶变换以高等数学(微积分)中的傅立叶级数为基础发展而来,它是信号处理(特别是图像处理)中非常重要的一种时频变换手段,具有重要应用。在图像编码、压缩、降噪、数字水印方面都有重要意义。此外,快速傅立叶...

图像处理复习2——图像傅立叶变换和频域滤波

图像处理复习 图像傅立叶变换和频域滤波器介绍

图像处理中的数学原理详解(Part5) ——傅立叶级数的概念2

结合对图像处理的学习和实践,大致总结了一部分图像处理研究中所需的数学原理基础。这些内容主要涉及微积分、向量分析、场论、泛函分析、偏微分方程、复变函数、变分法等。总结、归纳、提取了上面这些数学课程中,在...

图像处理中的数学原理详解(Part4) ——傅立叶级数的概念1

结合对图像处理的学习和实践,大致总结了一部分图像处理研究中所需的数学原理基础。这些内容主要涉及微积分、向量分析、场论、泛函分析、偏微分方程、复变函数、变分法等。总结、归纳、提取了上面这些数学课程中,在...

傅立叶变换在图像处理中的作用

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法, 比如离散余弦变换,gabor与小波在图像处理中也有重要的分量。 印象中,傅立叶变换在图像处理以...

傅立叶变换与图像处理的关系

立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创...

图像处理中的傅立叶变换

傅立叶变换在图像处理中有非常非常的作用。因为不仅傅立叶分析涉及图像处理的很多方面,傅立叶的改进算法,比如离散余弦变换(DCT),gabor与小波(WT)在图像处理中也有重要的分量。 印象中,傅立...

傅立叶变换在图像处理中的作用

从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变...

数字图像处理:第九章 线性系统、卷积、傅立叶变换

第九章 线性系统、卷积、傅立叶变换 目录 1.    线性系统 2.    二维卷积 3.    Fourier变换 作业 1. 线性系统 线性系统理论在“系统分...

数字图像处理中的傅立叶变换

二维Fourier变换的应用 前面已经提到了Fourier变换有两个好处,即:可以获得信号的频域特性;可以将卷积运算转换为乘积运算。 因此二维Fourier变换的应用也是根据这两个特点来进行的。 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:简单图像处理——傅立叶变换
举报原因:
原因补充:

(最多只允许输入30个字)