一元线性回归模型与最小二乘法及其C++实现

转载 2015年11月17日 16:09:35

 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线性是一个超平面...这里,谈一谈最简单的一元线性回归模型。

1.一元线性回归模型

模型如下:



总体回归函数中Y与X的关系可是线性的,也可是非线性的。对线性回归模型的“线性”有两种解释:

      (1)就变量而言是线性的,Y的条件均值是 X的线性函数

     (2)就参数而言是线性的,Y的条件均值是参数的线性函数

线性回归模型主要指就参数而言是“线性”,因为只要对参数而言是线性的,都可以用类似的方法估计其参数。

2.参数估计——最小二乘法

        对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:

        (1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
        (2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
        (3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。

        最常用的是普通最小二乘法( Ordinary  Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)

样本回归模型:


残差平方和:


则通过Q最小确定这条直线,即确定,以为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:


解得:


3.最小二乘法c++实现

  1. #include<iostream>  
  2. #include<fstream>  
  3. #include<vector>  
  4. using namespace std;  
  5.   
  6. class LeastSquare{  
  7.     double a, b;  
  8. public:  
  9.     LeastSquare(const vector<double>& x, const vector<double>& y)  
  10.     {  
  11.         double t1=0, t2=0, t3=0, t4=0;  
  12.         for(int i=0; i<x.size(); ++i)  
  13.         {  
  14.             t1 += x[i]*x[i];  
  15.             t2 += x[i];  
  16.             t3 += x[i]*y[i];  
  17.             t4 += y[i];  
  18.         }  
  19.         a = (t3*x.size() - t2*t4) / (t1*x.size() - t2*t2);  
  20.         //b = (t4 - a*t2) / x.size();  
  21.         b = (t1*t4 - t2*t3) / (t1*x.size() - t2*t2);  
  22.     }  
  23.   
  24.     double getY(const double x) const  
  25.     {  
  26.         return a*x + b;  
  27.     }  
  28.   
  29.     void print() const  
  30.     {  
  31.         cout<<"y = "<<a<<"x + "<<b<<"\n";  
  32.     }  
  33.   
  34. };  
  35.   
  36. int main(int argc, char *argv[])  
  37. {  
  38.     if(argc != 2)  
  39.     {  
  40.         cout<<"Usage: DataFile.txt"<<endl;  
  41.         return -1;  
  42.     }  
  43.     else  
  44.     {  
  45.         vector<double> x;  
  46.         ifstream in(argv[1]);  
  47.         for(double d; in>>d; )  
  48.             x.push_back(d);  
  49.         int sz = x.size();  
  50.         vector<double> y(x.begin()+sz/2, x.end());  
  51.         x.resize(sz/2);  
  52.         LeastSquare ls(x, y);  
  53.         ls.print();  
  54.           
  55.         cout<<"Input x:\n";  
  56.         double x0;  
  57.         while(cin>>x0)  
  58.         {  
  59.             cout<<"y = "<<ls.getY(x0)<<endl;  
  60.             cout<<"Input x:\n";  
  61.         }  
  62.     }  
  63. }  

网址:http://blog.csdn.net/qll125596718/article/details/8248249

一元线性回归模型最小二乘法

使误差「所谓误差,当然是观察值与实际真实值的差量」平方和达到最小以寻求估计值的方法,就叫做最小二乘法 http://blog.csdn.net/qll125596718/article/detail...
  • uui0408
  • uui0408
  • 2017年07月06日 17:22
  • 100

一元线性回归模型与最小二乘法及其C++实现

原文:http://blog.csdn.net/qll125596718/article/details/8248249       监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,...
  • u010064842
  • u010064842
  • 2013年10月06日 11:17
  • 1922

手把手教你实现线性回归模型

声明:版权所有,转载请联系作者并注明出处 http://blog.csdn.net/u013719780?viewmode=contents 最近打算实现一些...
  • u013719780
  • u013719780
  • 2017年08月20日 22:24
  • 796

线性回归模型与最小二乘法

1、基本概念线性回归假设因变量与自变量之间存在线性关系,因变量可通过自变量线性叠加而得到,即因变量和自变量之间可用如下方式表示。 y=w0+w1x1+w2x2+...+wnxny=w_0+w_1x_...
  • qingqing7
  • qingqing7
  • 2017年12月25日 09:10
  • 92

TensorFlow学习笔记(二):TensorFlow实现线性回归模型

一、线性回归模型中所涉及到API#导入TensorFlow包 import tensorflow as tf #TensorFlow程序分为两个阶段:准备阶段和执行阶段 #--------------...
  • kenwengqie2235
  • kenwengqie2235
  • 2017年11月09日 20:33
  • 143

用R进行一元线性回归分析建模

概念:一元线性回归预测是指成对的两个变量数据的散点图呈现出直线趋势时,采用最小二乘法,找到两者之间的经验公式,即一元线性回归预测模型。根据自变量的变化,来估计因变量变化的预测方法。 我用的是R内...
  • Dr_Guo
  • Dr_Guo
  • 2016年05月31日 15:59
  • 3745

一元线性回归分析及java实现

一元线性回归分析是处理两个变量之间关系的最简单模型,它所研究的对象是两个变量之间的线性相关关系。通过对这个模型的讨论,我们不仅可以掌握有关一元线性回归的知识,而且可以从中了解回归分析方法的基本思想、方...
  • LiMing_0820
  • LiMing_0820
  • 2017年08月10日 16:29
  • 212

机器学习系列之线性回归

一元线性回归在机器学习中,线性回归被用来对连续型数据进行预测,来确定两种或者两种以上变量间的相互关系。本篇博客介绍线性回归的最简单的一种情况——一元线性回归。如下图,现在我们在图上画一系列的点,然后打...
  • lionel_fengj
  • lionel_fengj
  • 2017年03月31日 23:50
  • 176

线性回归介绍及分别使用最小二乘法和梯度下降法对线性回归C++实现

线性回归介绍及分别使用最小二乘法和梯度下降法对线性回归C++实现
  • fengbingchun
  • fengbingchun
  • 2017年09月08日 11:09
  • 1020

TensorFlow 实现一元线性回归模型

**TensorFlow 实现一元线性回归模型一元线性回归即是将N个随机样本点拟合到一条直线上:样本点: x y 3.3 1.7 4.4 2.7 5.5 2.1 6....
  • curly_d
  • curly_d
  • 2017年10月06日 12:34
  • 63
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:一元线性回归模型与最小二乘法及其C++实现
举报原因:
原因补充:

(最多只允许输入30个字)