基于Seq2seq的中文聊天机器人

介绍了一个使用dynamic-RNN实现的Seq2Seq模型项目,该项目支持中文语料库处理并集成了beam search算法。通过修改源代码可以从文件中读取数据进行训练和预测。文中展示了如何进行预处理、训练、重新训练及预测操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dynamic-seq2seq

基于中文语料和dynamic_rnn的seq2seq模型

需要 python3+ tensorflow-1.0+
谷歌最近开源了一个seq2seq项目 google seq2seq
这个项目加入了beam search,但是非官方的项目,并且该项目是直接从文件里面读数据,所以需要修改代码。
tensorflow推出了dynamic_rnn替代了原来的bucket,本项目就是基于dynamic_rnn的seq2seq模型。

这里我构建了一些对话预料,中文语料本身就比较稀缺,理论上来说语料越多模型的效果越好,但会遇到很多新的问题,这里就不多作说明。

详情github dynamic-seq2seq


用法:

    # 预处理
    python3 preprocessing.py
    # 训练
    python3 seq2seq.py train
    # 重新训练
    python3 seq2seq.py retrain
    # 预测
    python3 seq2seq.py infer  

效果:

    me > 你的名字
    RR > 我叫RR

    me > 你
    RR > 我是RR呀,请问有什么可以帮您吗?

    me > 天气
    RR > 地点: 重庆
         气温: 27
         注意: 各项气象条件适宜,无明显降温过程,发生感冒机率较低。

    me > 北京的天气
    RR > 地点: 北京
         气温: 26
         注意: 各项气象条件适宜,无明显降温过程,发生感冒机率较低。

    me > 我是谁
    RR > 您是yw
    me > 修改我的名字
    ai > 您需要我叫您什么?
    me > 程序猿
    RR > 好的以后就叫您程序猿了
    me > 我的名字
    RR > 您是程序猿  
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值