Dijkstra算法求任意点到其它点的最短路径

原创 2015年07月10日 13:20:45
 /*
	Dijkstra算法的基本思想:每次找到离源点最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到
 其余所有点的最短路径。
	基本步骤:
1、将所有的顶点分为两个部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点
一个顶点。我们这里用一个book数组来记录哪些点在集合P中。例如对于某一个顶点i,如果book[i] = 1,则表示这个顶点在集合P中,
如果book[i] = 0,表示这个顶点在集合Q中。
2、设置源点s到自己的最短路径为0,即dis[s] = 0。如果存在有源点能直接到达的顶点i,则把dis[i]设置为e[s][i]。同时把所有其他
(源点不能直接到达的)顶点的最短路径设为∞。
3、在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P中。并考察所有以点u为起点的边,对每一条边
进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u->v添加到尾部来拓展一条从s到v的路径,这条路径的长度为dis[u]+e[u][v]。
如果这个值比目前已知的dis[v]的值要小,我们可以用这个新值来替代dis[v]中的值。
4、重复第3步,如果集合Q为空,算法结束。最终dis数组中的值就是源点到所有顶点的最短路径。
 */
#include <stdio.h>
#define inf 99999999
int main()  
{  
    int i, j, n, m, t1, t2, t3, u, v, min;  
	int start_x;
	int e[10][10], dis[10], book[10];
  
    printf("输入顶点的数目: ");  
    scanf("%d", &n);  
    printf("输入边的数目: ");  
    scanf("%d", &m);  
    for (i = 1; i<= n; i++)  
        for (j = 1; j <= n; j++)  
        {  
            if (i == j)   
                e[i][j] = 0;  
            else  
                e[i][j] = inf;//假设99999999为无穷大  
        }  
    //读入边  
	printf("输入两个相邻的顶点以及边的权值(空格隔开):\n");  
    for (i = 1; i<= m; i++)  
    {          
        scanf("%d %d %d", &t1, &t2, &t3);  
        e[t1][t2] = t3;  
    }  
	printf("输入起点:");
	scanf("%d", &start_x);
    //初始化dis数组,这里是1号顶点到其余各个顶点的初试路程
	for (i = 1; i<= n; i++)
		dis[i] = e[start_x][i];
	//book数组初始化
	for (i = 1; i<= n; i++)
		book[i] = 0;
	book[start_x] = 1;
	//Dijkstra算法的语句
	for (i = 1; i <= n-1; i++)
	{
		//找到离1号顶点最近的顶点
		min = inf;
		for (j = 1; j <= n; j++)
			if (book[j] == 0 && dis[j] < min)
			{
				min = dis[j];
				u = j;
			}
		book[u] = 1;
		for (v = 1; v <= n; v++)
		{
			if (e[u][v] < inf)
			{
				if (dis[v] > dis[u] + e[u][v])
					dis[v] = dis[u] + e[u][v];
			}
		}		
	}
	printf("%d到其它点的最短路程为:", start_x);
	for (i = 1; i <= n; i++)
		printf("%d ", dis[i]);

    getchar();  
    getchar();  
    return 0;
}




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

一个例子让你明白一个算法-Dijkstra(求源点到各顶点最短路径)

算法思想1.在一个图中,把所有顶点分为两个集合P,Q(P为最短路径集合,Q为待选集合),用dis数组保存源点到各个顶点的最短路径(到自身为0)。 2.初始化P集合,就是加入源点到该集合,并在mark...

dijkstra(n^2)求某个点到所有点的最短路径

#include const int maxn=1001,inf=1000000000; using namespace std; int a[maxn][maxn],d[maxn],p[maxn]...

有向图中单个源点到终点的最短路径--Dijkstra算法与实现

1、Dijkstra算法能够解决有向图中单个源点到另一终点的最短路径问题,它的算法过程如下: 1)用矩阵graph[]N[N](N为图中节点个数)表示带权的有向图G。若图中两个节点vi和vj是连通的...
  • vgxpm
  • vgxpm
  • 2015-08-28 21:44
  • 1137

Dijkstra算法--有向图的源点到其他顶点的最短路径(连接矩阵、邻接矩阵两种方式)

引子: Dijkstra算法:某个顶点到其他顶点的最短路径。 以下面这个图为例:其中源点是A。关键点:维护一个二维数组,具体见下面: 1、首先,派一名调查员驻扎在A处,在A处,a调查员能够知...

Matalab代码 实现 Dijkstra求 有向图及无向图之间,任意两点之间的最短路径

算法思路稍后附上源代码%% Dijkstra function minWeightMatrix=shortestPath(G,nodeNum) minWeightMatrix=zeros(node...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)