[leetcode] 198. House Robber

Question:

You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.

Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.

Solution:

动态规划。
一开始的思路大概是,维护两个数组,一个rob,rob[i] 表示考虑 (1, …, i) 个房子,并抢第i个房子所能获得的最大收益;另一个数组是norob,norob[i] 表示考虑 (1, …, i) 个房子,并且不抢第i个房子所能获得的最大收益。这样,最后返回 rob[n] 和 norob[n] 的最大值即可。
状态转移方程如下:

rob[i] = max(norob[i-1]+nums[i-1], rob[i-1]-nums[i-1]+nums[i-1]);
norob[i] = max(rob[i-1], norob[i-1]);

即对于rob[i],考虑第一种情况是没有抢第 i-1 个房子,因此就可以抢第 i 个房子,即 norob[i-1]+nums[i];第二种情况是,后悔抢了第 i-1 个房子,现在不抢了(等同于把钱放回去),再抢第 i 个房子,即 rob[i-1]-nums[i-1]+nums[i]。
对于norob[i],则为抢了房子 i 或不抢房子 i 的最大值,注意不能考虑后悔没抢房子 i-1 的情况,因为并不知道有没有抢房子 i-2,而且,后悔没抢房子 i-1 然后抢的情况在 rob 里是已经讨论过的(即norob[i-1]+num[i-1])。
而继续分析可知,在遇到一个房子 i 的时候,rob[i] 算的是抢这个房子的最大收益,norob[i] 是不抢(即使 i-1 没抢也不能后悔)的收益,则 rob[i] > norob[i] 一直成立。因此实际过程中,可以用 rob[i-1] 直接代替norob[i]。
代码如下:

class Solution {
public:
    int rob(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        if (nums.size() == 1) return nums[0];

        int rob[nums.size()+1];
        rob[0] = 0, rob[1] = nums[0];

        for (int i = 1; i < nums.size(); i++) {
            rob[i+1] = max(rob[i-1], rob[i]-nums[i-1]) + nums[i];
        }

        return max(rob[nums.size()-1], rob[nums.size()]);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值