连载 | 理解线性代数02 求解 Ax = b


上篇通过线性方程组引入矩阵的概念,解决了当 A 是可逆矩阵时,可用高斯消元法求解线性方程组,并且给出解析解。本篇试图彻底解决 Ax = b 的解(A为一般矩阵时情形),并且引入了矩阵的四个基本子空间的概念。



为了论证一下,你的数学是不是体育老师教的,让我们先回忆一下,什么是矩阵的秩,什么是矩阵的零空间



引子:Ax = 0


介绍 Ax = b 之前,作为特例,先介绍 Ax = 0


例:

    


很显然,依然可以采用高斯消元法,通过行变换,得到上三角矩阵 U


    


进一步进行行变换,可得到 R 矩阵(RREF, Reduced row echelon form, 简化行阶梯形式)。


    


R 矩阵是行变换后的最简形式,主元均为1,且主元所在列其他元素均为0。



概念:主列、自由列、矩阵的秩

主列(pivot column):主变量所在的列。

自由列(free column):自由变量(非主变量)所在的列。

通常:将主元的个数,称为矩阵的秩(rank)。有多种定义 rank(A),后面将逐步介绍,尽情期待。


显然 ,上面的 A。

rank(A) = rank(U) = rank(R) = 2;

#free(A) = #free(U) = #free(R) = n - r = 4 - 2 = 2。

性质:行变换不影响矩阵的 rank。


直观求解


因为 A x = 0 等价于 R x = 0


通常的做法,赋值自由变量,求解主变量,得到方程组的一组特解。

不妨设 x2 = 1, x4 = 0,回代到原方程组得到,

    1·x1 + 2·1 + 0·x3 + (-2) ·0 = 0

    0·x1 + 0·1 + 1·x3 + 4·0 = 0 

不难求得:

     x1 = -2, x3 = 0。

同理设 x2 = 0, x4 = 1,同理 x1 = 2, x3 = -2。


最终得到方程组的两组特解

可以看出:特解的个数等于 = #free(A),想象一下把自由变量取为单位矩阵I


    


最终通解


    


本篇后面会介绍向量空间,通解可以转化为矩阵 N 的列空间

问题的关键变为求解 N(Nullspace Matrix, 零空间矩阵)。


矩阵解释 


通过列变换将 R 重组,其实就是将 x2/x3 所在列交换位置,最终再交换回来就可以了。


    


这样就把主变量、自由变量拆分开了,Ax = 0 最终变为:


    


不难想到,令自由变量为单位阵(和上面的方式一致),最终得到:


    


副产品:矩阵的 ER 分解 


上篇介绍过方阵的 LR 分解。即 PA = LR。

利用 Gauss 消元法。

    

同样可以记录:A => R 的全过程,即为 E。

显然 E A = R => A = E^-1 R。



Ax = b



介绍完 Ax = 0, 终于可以介绍 Ax = b。将从“可解性”、“解法”、“四种基本情形” 三个方面分别介绍。

可解行


Ax = 一定有解(至少有一个零解,零空间),但是 Ax = 不一定有解。


依然以 A 为例:


    


在其增广矩阵上做行变换。


    


那么,有解的必要条件: 

充要条件b 属于 A 的列空间 (本篇后面会介绍)。


解法


求解  Ax = 可以转化为两步:


    

    


例:

    



1. 寻找特解


令 x2 = 0, x4 = 0 => x1 = 1, x3 = 1。得到特解:


    


2. Ax = 0


前面已得到。

    


综合得到:

    


四种基本情形 


具体分为四种情况:

1. 列满秩( r = n )

2. 行满秩( r = m)

3. 行列满秩( r = m = n)

4. 行列均不满秩( r < m, r < n)

经过行变换:




矩阵的四个基本子空间


向量空间(线性空间) 


通常被称为线性空间,又被称为向量空间(自行百度)。

线性空间是定义在 加法 和 数乘 两种运算,并且满足 8 条基本性质(自行百度)。 


要求:

1. 向量空间必须包含原点(Origin)。

2. 向量空间中任意向量的数乘、求和运算,得到的向量也在该空间之中。


向量子空间


对于向量空间 S 和 T, 那么 S ∩ T 也是向量空间,自行验证。


矩阵基本子空间


矩阵基本子空间之一:列空间 C(A)


A 的列向量所张成的空间,被称为 A 的列空间。

Ax = b 有非零解充要条件:b 属于 A 的列空间。


矩阵基本子空间之二:零空间 N(A)


Ax = 0 的解也构成空间,被称为矩阵 A 的零空间。

从上面例子中,可以看出 Ax = 0 的解的确是一个向量空间。


    

正好对应 N 的列空间。


矩阵基本子空间之三:行空间 


矩阵 A 的行空间 = A^T 的列空间。


矩阵基本子空间之四:左零空间 


左零空间空间的来由?



本文转载自我师弟的公众号,在此谢过!


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值