crc介绍之一

转载 2007年10月08日 13:34:00

    循环冗余码校验英文名称为Cyclical   Redundancy   Check,简称CRC。它是利用除法及余数的原理来作错误侦测(Error   Detecting)的。实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较,若两个CRC值不同,则说明数据通讯出现错误。根据应用环境与习惯的不同,CRC又可分为以下几种标准:  
    ①CRC-12码;  
    ②CRC-16码;  
    ③CRC-CCITT码;  
    ④CRC-32码。  
CRC-12码通常用来传送6-bit字符串。CRC-16及CRC-CCITT码则用是来传送8-bit字符,其中CRC-16为美国采用,而CRC-CCITT为欧洲国家所采用。CRC-32码大都被采用在一种称为Point-to-Point的同步传输中。 下面以最常用的CRC-16为例来说明其生成过程。  
   CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或,之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。

下面为CRC的计算过程:  
    1.设置CRC寄存器,并给其赋值FFFF(hex)。  
    2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC寄存器。  
    3.CRC寄存器向右移一位,MSB补零,移出并检查LSB。  
    4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。  
    5.重复第3与第4步直到8次移位全部完成。此时一个8-bit数据处理完毕。  
    6.重复第2至第5步直到所有数据全部处理完成。  
    7.最终CRC寄存器的内容即为CRC值。

详细如下:
一、循环冗余校验码(CRC)  
  CRC校验采用多项式编码方法。被处理的数据块可以看作是一个n阶的二进制多项式,由   。如一个8位二进制数10110101可以表示为:   。多项式乘除法运算过程与普通代数多项式的乘除法相同。多项式的加减法运算以2为模,加减时不进,错位,和逻辑异或运算一致。  
  采用CRC校验时,发送方和接收方用同一个生成多项式g(x),并且g(x)的首位和最后一位的系数必须为1。CRC的处理方法是:发送方以g(x)去除t(x),得到余数作为CRC校验码。校验时,以计算的校正结果是否为0为据,判断数据帧是否出错。  
  CRC校验可以100%地检测出所有奇数个随机错误和长度小于等于k(k为g(x)的阶数)的突发错误。所以CRC的生成多项式的阶数越高,那么误判的概率就越小。CCITT建议:2048   kbit/s的PCM基群设备采用CRC-4方案,使用的CRC校验码生成多项式g(x)=   。采用16位CRC校验,可以保证在     bit码元中只含有一位未被检测出的错误   。在IBM的同步数据链路控制规程SDLC的帧校验序列FCS中,使用CRC-16,其生成多项式g(x)=   ;而在CCITT推荐的高级数据链路控制规程HDLC的帧校验序列FCS中,使用CCITT-16,其生成多项式g(x)=   。CRC-32的生成多项式g(x)=   。CRC-32出错的概率比CRC-16低   倍   。由于CRC-32的可靠性,把CRC-32用于重要数据传输十分合适,所以在通信、计算机等领域运用十分广泛。在一些UART通信控制芯片(如MC6582、Intel8273和Z80-SIO)内,都采用了CRC校验码进行差错控制;以太网卡芯片、MPEG解码芯片中,也采用CRC-32进行差错控制。  
二、CRC校验码的算法分析  
  CRC校验码的编码方法是用待发送的二进制数据t(x)除以生成多项式g(x),将最后的余数作为CRC校验码。其实现步骤如下:  
  (1) 设待发送的数据块是m位的二进制多项式t(x),生成多项式为r阶的g(x)。在数据块的末尾添加r个0,数据块的长度增加到m+r位,对应的二进制多项式为   。  
  (2) 用生成多项式g(x)去除   ,求得余数为阶数为r-1的二进制多项式y(x)。此二进制多项式y(x)就是t(x)经过生成多项式g(x)编码的CRC校验码。  
  (3) 用   以模2的方式减去y(x),得到二进制多项式   。   就是包含了CRC校验码的待发送字符串。  
  从CRC的编码规则可以看出,CRC编码实际上是将代发送的m位二进制多项式t(x)转换成了可以被g(x)除尽的m+r位二进制多项式   ,所以解码时可以用接受到的数据去除g(x),如果余数位零,则表示传输过程没有错误;如果余数不为零,则在传输过程中肯定存在错误。许多CRC的硬件解码电路就是按这种方式进行检错的。同时   可以看做是由t(x)和CRC校验码的组合,所以解码时将接收到的二进制数据去掉尾部的r位数据,得到的就是原始数据。  
  为了更清楚的了解CRC校验码的编码过程,下面用一个简单的例子来说明CRC校验码的编码过程。由于CRC-32、CRC-16、CCITT和CRC-4的编码过程基本一致,只有位数和生成多项式不一样。为了叙述简单,用一个CRC-4编码的例子来说明CRC的编码过程。  
  设待发送的数据t(x)为12位的二进制数据100100011100;CRC-4的生成多项式为g(x)=   ,阶数r为4,即10011。首先在t(x)的末尾添加4个0构成   ,数据块就成了1001000111000000。然后用g(x)去除   ,不用管商是多少,只需要求得余数y(x)。下表为给出了除法过程。  
  除数次数 被除数/   g(x)/结果         余数  
  0   1   001000111000000 100111000000  
    1   0011  
    0   000100111000000  
  1   1   00111000000     1000000  
    1   0011    
    0   00001000000  
  2   1   000000 1100  
    1   0011  
    0   001100  
   
  从上面表中可以看出,CRC编码实际上是一个循环移位的模2运算。对CRC-4,我们假设有一个5   bits的寄存器,通过反复的移位和进行CRC的除法,那么最终该寄存器中的值去掉最高一位就是我们所要求的余数。所以可以将上述步骤用下面的流程描述:  
  //reg是一个5   bits的寄存器  
  把reg中的值置0.    
  把原始的数据后添加r个0.    
  While   (数据未处理完)    
  Begin    
  If   (reg首位是1)    
  reg   =   reg   XOR   0011.    
  把reg中的值左移一位,读入一个新的数据并置于register的0   bit的位置。    
  End  
  reg的后四位就是我们所要求的余数。  
  这种算法简单,容易实现,对任意长度生成多项式的G(x)都适用。在发送的数据不长的情况下可以使用。但是如果发送的数据块很长的话,这种方法就不太适合了。它一次只能处理一位数据,效率太低。为了提高处理效率,可以一次处理4位、8位、16位、32位。由于处理器的结构基本上都支持8位数据的处理,所以一次处理8位比较合适。为了对优化后的算法有一种直观的了解,先将上面的算法换个角度理解一下。在上面例子中,可以将编码过程看作如下过程:  
  由于最后只需要余数,所以我们只看后四位。构造一个四位的寄存器reg,初值为0,数据依次移入reg0(reg的0位),同时reg3的数据移出reg。有上面的算法可以知道,只有当移出的数据为1时,reg才和g(x)进行XOR运算;移出的数据为0时,reg不与g(x)进行XOR运算,相当与和0000进行XOR运算。就是说,reg和什么样的数据进行XOR移出的数据决定。由于只有一个bit,所以有   种选择。上述算法可以描述如下,  
  //reg是一个4   bits的寄存器  
  初始化t[]={0011,0000}  
  把reg中的值置0.    
  把原始的数据后添加r个0.    
  While   (数据未处理完)    
  Begin    
  把reg中的值左移一位,读入一个新的数据并置于register的0   bit的位置。  
  reg   =   reg   XOR   t[移出的位]  
  End  
  上面算法是以bit为单位进行处理的,可以将上述算法扩展到8位,即以Byte为单位进行处理,即CRC-32。构造一个四个Byte的寄存器reg,初值为0x00000000,数据依次移入reg0(reg的0字节,以下类似),同时reg3的数据移出reg。用上面的算法类推可知,移出的数据字节决定reg和什么样的数据进行XOR。由于有8个bit,所以有   种选择。上述算法可以描述如下:  
  //reg是一个4   Byte的寄存器  
  初始化t[]={…}//共有   =256项  
  把reg中的值置0.    
  把原始的数据后添加r/8个0字节.    
  While   (数据未处理完)    
  Begin    
  把reg中的值左移一个字节,读入一个新的字节并置于reg的第0个byte的位置。  
  reg   =   reg   XOR   t[移出的字节]  
  End  
  算法的依据和多项式除法性质有关。如果一个m位的多项式t(x)除以一个r阶的生成多项式g(x),   ,将每一位   (0=<k<m)提出来,在后面不足r个0后,单独去除g(x),得到的余式位   。则将   后得到的就是t(x)由生成多项式g(x)得到的余式。对于CRC-32,可以将每个字节在后面补上32个0后与生成多项式进行运算,得到余式和此字节唯一对应,这个余式就是上面算法种t[]中的值,由于一个字节有8位,所以t[]共有   =256项。多项式运算性质可以参见参考文献[1]。这种算法每次处理一个字节,通过查表法进行运算,大大提高了处理速度,故为大多数应用所采用。  
三、CRC-32的程序实现。  
  为了提高编码效率,在实际运用中大多采用查表法来完成CRC-32校验,下面是产生CRC-32校验吗的子程序。  
  unsigned   long     crc_32_tab[256]={  
  0x00000000,   0x77073096,   0xee0e612c,   0x990951ba,   0x076dc419,   0x706af48f,   0xe963a535,   0x9e6495a3,0x0edb8832,…,   0x5a05df1b,   0x2d02ef8d  
  };//事先计算出的参数表,共有256项,未全部列出。  
   
  unsigned   long   GenerateCRC32(char   xdata   *   DataBuf,unsigned   long     len)  
  {  
  unsigned   long   oldcrc32;  
  unsigned   long   crc32;  
  unsigned   long   oldcrc;  
  unsigned     int   charcnt;  
                  char   c,t;  
  oldcrc32   =   0x00000000;   //初值为0  
          charcnt=0;  
  while   (len--)   {  
                                  t=   (oldcrc32   >>   24)   &   0xFF;       //要移出的字节的值  
  oldcrc=crc_32_tab[t];                   //根据移出的字节的值查表  
                                  c=DataBuf[charcnt];                     //新移进来的字节值  
                                  oldcrc32=   (oldcrc32   <<   8)   |   c;       //将新移进来的字节值添在寄存器末字节中  
                                  oldcrc32=oldcrc32^oldcrc;           //将寄存器与查出的值进行xor运算  
                                  charcnt++;  
  }  
                  crc32=oldcrc32;  
                  return   crc32;  
  }  
  参数表可以先在PC机上算出来,也可在程序初始化时完成。下面是用于计算参数表的c语言子程序,在Visual   C++   6.0下编译通过。  
  #i nclude   <stdio.h>  
  unsigned   long   int   crc32_table[256];  
  unsigned   long   int   ulPolynomial   =   0x04c11db7;  
  unsigned   long   int   Reflect(unsigned   long   int   ref,   char   ch)  
  { unsigned   long   int   value(0);  
  //   交换bit0和bit7,bit1和bit6,类推  
  for(int   i   =   1;   i   <   (ch   +   1);   i++)  
  { if(ref   &   1)  
  value   |=   1   <<   (ch   -   i);  
          ref   >>=   1; }  
  return   value;  
  }  
  init_crc32_table()  
  { unsigned   long   int   crc,temp;  
  //   256个值  
  for(int   i   =   0;   i   <=   0xFF;   i++)  
  {       temp=Reflect(i,   8);  
  crc32_table[i]=   temp<<   24;  
  for   (int   j   =   0;   j   <   8;   j++){  
            unsigned   long   int   t1,t2;  
    unsigned   long   int   flag=crc32_table[i]&0x80000000;  
    t1=(crc32_table[i]   <<   1);  
    if(flag==0)  
        t2=0;  
    else  
        t2=ulPolynomial;  
    crc32_table[i]   =t1^t2   ; }  
  crc=crc32_table[i];  
  crc32_table[i]   =   Reflect(crc32_table[i],   32);  
  }  
  }  
 结束语  
          CRC校验由于实现简单,检错能力强,被广泛使用在各种数据校验应用中。占用系统资源少,用软硬件均能实现,是进行数据传输差错检测地一种很好的手段。

循环冗余校验检错方案CRC的原理介绍

循环冗余校验检错方案CRC 1. CRC校验原理     CRC校验原理看起来比较复杂,好难懂,因为大多数书上基本上是以二进制的多项式形式来说明的。其实很简单的问题,其根本...
  • midion9
  • midion9
  • 2015年10月29日 09:16
  • 1133

CRC的基本原理详解

CRC(Cyclic Redundancy Check)被广泛用于数据通信过程中的差错检测,具有很强的 检错能力。本文详细介绍了CRC的基本原理,并且按照解释通行的查表算法的由来的思路介绍 了各种...
  • dream_1996
  • dream_1996
  • 2017年06月22日 14:20
  • 892

CRC算法及原理

CRC算法及原理  本文转自:http://www.cnblogs.com/FPGA_DSP/archive/2010/05/08/1730529.html CRC校验码的基本思想是利用线性编...
  • qinghecool
  • qinghecool
  • 2016年10月14日 16:15
  • 1944

如何进行CRC校验

为了保证数据传输的可靠性,计算机网络传输数据时,必须采用差错检验措施,数据链路层广泛应用了循环冗余检验CRC(Cyclic Redundancy Check)的检错技术。基本原理: CR...
  • scmuzi18
  • scmuzi18
  • 2017年05月11日 16:52
  • 1691

png的CRC源代码_带入图片数据测试代码

这个CRC就是曾经挂科的计算机网络里面见过的CRC的应用,不是照本宣科的应用,是变了个很奇怪的运用,前不久写了CRC的那个,发现图片数据不长那样,然后就有点放弃了。接着发现png像素数据那边的位到底按...
  • u014646950
  • u014646950
  • 2016年04月13日 17:32
  • 953

基于FPGA的CRC校验码生成器

reference:   http://www.cnblogs.com/BitArt/archive/2012/12/26/2833100.html 1.概述   CRC即Cyclic Redu...
  • limanjihe
  • limanjihe
  • 2016年08月31日 17:44
  • 1056

CRC详解及在LTE中的应用

CRC 一、基本原理     CRC即循环冗余校验码(Cyclic Redundancy Check), CRC检验原理实际上就是在一个K位二进制数据序列之后附加一个R位二进制检验码(序列),从而...
  • haijin0829
  • haijin0829
  • 2015年03月26日 16:09
  • 5698

LTE物理层之信道编码--CRC校验

CRC校验原理: 在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码也叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(...
  • wo17fang
  • wo17fang
  • 2015年01月21日 14:52
  • 2567

CRC的校验原理以及例子

一、基本原理     CRC检验原理实际上就是在一个p位二进制数据序列之后附加一个r位二进制检验码(序列),从而构成一个总长为n=p+r位的二进制序列;附加在数据序列之后的这个检验码与数据序列的内容之...
  • qq_32616315
  • qq_32616315
  • 2017年05月07日 22:19
  • 1481

CRC冗余校验详解

一CRC简介 CRC校验码的基本思想是利用线性编码理论, 在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(既CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k...
  • qq_27312943
  • qq_27312943
  • 2016年10月02日 15:41
  • 1646
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:crc介绍之一
举报原因:
原因补充:

(最多只允许输入30个字)