[BZOJ 3111] ZJOI 2013 蚂蚁寻路 · 动态规划

BZOJ上没有题目,也是有点小坑……

那么自己在草稿纸上画画写写就很容易发现,这题其实是要你在一个n*m大小的矩形中框出一个长城形状的子图,使得子图包含的权值和最大。框出图形的底和左右两边都是直的,上端是一高一低间隔排布,总共有2*k+1个(间隔k次)(如下图)

那么从图中我们可以看出,其实是要求2*k+1个同底的子矩形相连组合起来取得的最大和。

这种题目做的时候很容易往高维度想啊,f[i][j][p][h]表示当前这个子矩形的右下角为(i,j),是第p个矩形,高度为h时取得的最优解。

g[i][j][p][h][0/1]表示当前这个子矩形的右下角为(i,j),是第p个矩形,高度大于等于/小于等于h时的最优解。

得出转移方程:f[i][j][p][h]=max(f[i][j-1][p][h],g[i][j-1][p-1][h][p%2])+s[i][j]-s[h-1][j]

每得出一种转移方式,我们都要想,为什么是这样?

第一个f[i][j-1][p][h]就表示这一列与上一列还在同一个矩形内,变化的只是列+1。

第二个就表示从第j列开始是一个新的矩形。由于矩形是一高一低间隔排布,假设第p个矩形是高的,那么第p-1个矩形肯定要比它低,而高的矩形都是奇数号,所以就是g[i][j][j-1][p-1][h][p%2],低的矩形也同理。

那么g[i][j][p][h][0/1]就在f[i][j][p][h]全更新完后,按照定义的性质从高到低和从低到高分别扫一遍,转移

     g[i][j][p][h][0]=max(g[i][j][p][h -1][0],f[i][j][p][h -1])

     g[i][j][p][h][1]=max(g[i][j][p][h+1][1],f[i][j][p][h+1])

边界条件为f[i][0][p][h]=g[i][0][p][h][1]=g[i][0][p][h][0]=-inf

最后ans用f[i][j][k][i],g[i][j][k][i][0]来更新(别问我为什么)

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
#define inf 1000000000

const int maxn=120;
int n,m,k,ans,a[maxn][maxn],f[maxn][25][maxn],g[maxn][25][maxn][2],s[maxn][maxn];

int main(){
    scanf("%d%d%d",&n,&m,&k);
    k=k*2+1;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
            scanf("%d",&a[i][j]),s[i][j]=s[i-1][j]+a[i][j];
	for (int i=1;i<=k;i++)
		for (int j=1;j<=n;j++)
			f[0][i][j]=g[0][i][j][0]=g[0][i][j][1]=-inf;
	ans=-inf;
	for (int i=1;i<=n;i++)
		for (int j=1;j<=m;j++){
			for (int p=1;p<=k;p++){
				for (int h=i;h;h--)
					f[j][p][h]=max(f[j-1][p][h],g[j-1][p-1][h][p%2])+s[i][j]-s[h-1][j];
				g[j][p][1][0]=-inf;
				for (int h=2;h<=i;h++)			
					g[j][p][h][0]=max(g[j][p][h-1][0],f[j][p][h-1]);
				g[j][p][i][1]=-inf;
	   			for (int h=i-1;h;h--)
	   				g[j][p][h][1]=max(g[j][p][h+1][1],f[j][p][h+1]);
			}
			ans=max(ans,max(f[j][k][i],g[j][k][i][0]));
		}
    printf("%d\n",ans);
	return 0;
}


 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值