# poj1050

### To the Max

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 46124 Accepted: 24373

Description
Given a two-dimensional(二维的) array of positive and negative integers, a sub-rectangle is any contiguous(连续的) sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal(最高的) sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output
Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1

8 0 -2

Sample Output

15

Source
Greater New York 2001

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int num[110][110],dp[110][110];
int main(){
int n,i,j;
while(scanf("%d",&n)!=EOF){
memset(dp,0,sizeof(dp));
for ( i = 0; i < n; ++i)
{
for ( j = 0; j < n; ++j)
{
scanf("%d",&num[i][j]);
}
}
int max=0,sum;
for ( i = 0; i < n; ++i)
{
for ( j = i; j < n; ++j)        //从i行到j行
{
sum=0;
for (int k = 0; k < n; ++k)
{
int temp=0;
for (int m = i; m <= j; ++m)
{
temp+=num[k][m];    //竖着加某一列
}
sum+=temp;
if(sum<0)sum=0;         //当加到小于的时候置为0，重新开始加。
else if(sum>max)max=sum;
}
}
}
printf("%d\n", max);

}
return 0;
}

• 本文已收录于以下专栏：

举报原因： 您举报文章：poj1050 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)