poj1050

原创 2016年05月31日 00:57:01

To the Max

Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 46124 Accepted: 24373

Description
Given a two-dimensional(二维的) array of positive and negative integers, a sub-rectangle is any contiguous(连续的) sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal(最高的) sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output
Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1

8 0 -2

Sample Output

15

Source
Greater New York 2001
大概意思就是从n*n的矩形中求和最大的矩形。
首先自己想,没想出来,后来网上看题解,发现之前做过差不多的一维数组求最大的题目,后来想了下,大概意思懂了,然后提交,A了,就是i从0到n,然后j从i到n取,当某一个i,j时,就当做一维数组处理,k从0到n求列最大值,然后如果为负数,表明前面的数已不能再参与后面的相加了,应该置为0。然后竖着相加。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int num[110][110],dp[110][110];
int main(){
    int n,i,j;
    while(scanf("%d",&n)!=EOF){
        memset(dp,0,sizeof(dp));
        for ( i = 0; i < n; ++i)
        {
            for ( j = 0; j < n; ++j)
            {
                scanf("%d",&num[i][j]);
            }
        }
        int max=0,sum;
        for ( i = 0; i < n; ++i)
        {
            for ( j = i; j < n; ++j)        //从i行到j行
            {
                sum=0;
                for (int k = 0; k < n; ++k)
                {
                    int temp=0;
                    for (int m = i; m <= j; ++m)
                    {
                        temp+=num[k][m];    //竖着加某一列
                    }
                    sum+=temp;
                    if(sum<0)sum=0;         //当加到小于的时候置为0,重新开始加。
                    else if(sum>max)max=sum;
                }
            }
        }
        printf("%d\n", max);


    }
    return 0;
}
版权声明:本文为博主原创文章,转载请注明出处。

相关文章推荐

poj 1050

  • 2008-05-11 10:42
  • 744B
  • 下载

(三) POJ1050,动态规划必做题目,经典程度五颗星。这个题目的前身就是:求最大子序列和。 先来看最大子序列和。有一串数,有正有负,如2,-1,5,4,-9,7,0,3,-5。求:这

(三) POJ1050,动态规划必做题目,经典程度五颗星。这个题目的前身就是:求最大子序列和。       先来看最大子序列和。有一串数,有正有负,如2,-1,5,4,-9,7,0,3,-5。求:这...

POJ 1050 To the Max

To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 49003   Accepted: 2592...

POJ--1050--To the Max(线性动规,最大子矩阵和)

POJ--1050--To the Max(线性动规,最大子矩阵和)

hdu 1003/poj 1050 连续子序列最大和经典基础dp

之前不太理解,只记得和为负的就记为0,然后不断扫下去,更新ans 实际上用了 sum[i]-sum[j] ,令ans最小,即找出最大的sun[j](j hdu1003  还要求出起始点和终点 #i...

poj1050-To the Max-最大子矩阵-dp

一篇讲解最大子矩阵的博客:http://blog.csdn.net/beiyeqingteng/article/details/7056687 To the Max Time Limit: ...

POJ1050

题目链接:POJ1050 题目大意是在一个矩阵中求能使和最大的子矩阵,自己想了好一会但是没想出来,后来去找了解题报告。大致就是把一个矩阵压缩成一维的数组,然后求最大的字串和。 比如 3 1 2 ...

poj1050 To the Max dp

题意:求一个矩阵的最大子矩阵和。 思路:首先预处理出sum[ i ][ j ][ k ],即以(i,j)为最上端向下连续k个数的和。接着设dp[ i ][ j ][ k ]为以(i,j)为左上端向下...

POJ 1050 动态规划

#include #include #include #include #include #include #include #include #include #include ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)