二分查找各种情况大总结

原创 2016年08月30日 21:40:16

二分查找多次刷题时遇到,虽然每次也能写对,但花了蛮多时间,没好好想过。而且网上的太多版本,并不是很简洁,而且边界条件变化情况太多,容易混淆,下面是自己对二分查找的一些思考和总结,尽量写得简单易懂。


三种基本版本:

1.1 二分查找原始版--查找某个数的下标(任意一个)

在有序数组中查找某个数,找到返回数的下标,存在多个返回任意一个即可,没有返回-1。所有程序采用左右均为闭区间,即函数中n为最后一个元素下标,而不是元素个数。典型代码如下:

public int binarySearch(int[] a, int n, int key){
		//n + 1 个数
		int low = 0;
		int high = n;
		int mid = 0;
		while(low <= high) {
			mid = low + ((high-low) >> 1);
			if(key == a[mid]) {
				return mid;
			} else if(key < a[mid]) {
				high = mid - 1;
			} else {
				low = mid + 1;
			}
		}
		return -1;
	}

1.2 查找第一个大于等于某个数的下标

例:int[] a = {1,2,2,2,4,8,10},查找2,返回第一个2的下标1;查找3,返回4的下标4;查找4,返回4的下标4。如果没有大于等于key的元素,返回-1。

下面是代码,改动只有两处:

public int firstGreatOrEqual(int[] a, int n, int key){
		//n + 1 个数
		int low = 0;
		int high = n;
		int mid = 0;
		while(low <= high) {
			mid = low + ((high-low) >> 1);
			if(key <= a[mid]) {
				high = mid - 1;
			} else {
				low = mid + 1;
			}
		}
		return low <= n ? low : -1;
	}


解释:

1、条件为key<=a[mid],意思是key小于等于中间值,则往左半区域查找。如在 {1,2,2,2,4,8,10}查找2,第一步,low=0, high=6, 得mid=3, key <= a[3],往下标{1,2,2}中继续查找。

2、终止前一步为: low=high,得mid = low,此时如果key <= a[mid],则high会改变,而low指向当前元素,即为满足要求的元素。如果key > a[mid],则low会改变,而low指向mid下一个元素。

3、如果key大于数组最后一个元素,low最后变为n+1,即没有元素大于key,需要返回 -1。

1.3 查找第一个大于某个数的下标

例:int[] a = {1,2,2,2,4,8,10},查找2,返回4的下标4;查找3,返回4的下标4;查找4,返回8的下标5。如果没有大于key的元素,返回-1。

如下是代码,与上面大于等于某个数仅判断一个符号不同:

public int firstGreat(int[] a, int n, int key){
		//n + 1 个数
		int low = 0;
		int high = n;
		int mid = 0;
		while(low <= high) {
			mid = low + ((high-low) >> 1);
			if(key < a[mid]) {
				high = mid - 1;
			} else {
				low = mid + 1;
			}
		}
		return low <= n ? low : -1;
	}


以上原型的扩展应用

2.1 查找数组中某个数的位置的最小下标,没有返回-1

直接用上面1.2,但需要处理一下,即当返回的low位置不等于key时,也返回-1。如下:

public int firstIndex(int[] a, int n, int key){
		//n + 1 个数
		int low = 0;
		int high = n;
		int mid = 0;
		while(low <= high) {
			mid = low + ((high-low) >> 1);
			if(key <= a[mid]) {
				high = mid - 1;
			} else {
				low = mid + 1;
			}
		}
		return (low <= n) && (a[low] == key) ? low : -1;
	}


2.2 查找数组中某个数的位置的最大下标,没有返回-1

直接用上面1.3,得到的下标 - 1即可,但也需要处理一下,即不用判断low <= n,而是判断low-1>=0,且返回的low-1位置等于key时,才返回位置low - 1。如下:

public int lastIndex(int[] a, int n, int key){
		//n + 1 个数
		int low = 0;
		int high = n;
		int mid = 0;
		while(low <= high) {
			mid = low + ((high-low) >> 1);
			if(key < a[mid]) {
				high = mid - 1;
			} else {
				low = mid + 1;
			}
		}
		return (low - 1 >= 0 && (a[low - 1] == key))? low - 1: -1;
	}


2.3 查找数组中小于某个数的最大下标,没有返回-1

直接用上面1.2,返回的low-1位置即为可能的位置。也需要处理一下,需要low-1>=0。

public int firstLess(int[] a, int n, int key) {
		// n + 1 个数
		int low = 0;
		int high = n;
		int mid = 0;
		while (low <= high) {
			mid = low + ((high - low) >> 1);
			if (key <= a[mid]) {
				high = mid - 1;
			} else {
				low = mid + 1;
			}
		}
		return (low - 1 >= 0) ? low - 1 : -1;
	}

2.4 查找数组中某个数的出现次数

直接使用1.2,1.3即可,但需要修改1.2,1.3的返回条件,当low>n时,直接返回low。举例说明:int[] a = {1,2,2,2,4,8,10},查找10的个数,根据1.2程序得到low = 6,而1.3程序返回值 = -1,不符合。因此需要将1.3得到的low = n + 1值返回即可。同理,如果查找15,此时1.2程序返回值为-1,也得改为直接返回low = n+1。

使用1.2,1.3,分别求得下界first和上界last,两个相减即(last - first)是key出现次数。如下:

	public int getCount(int[] a, int n, int key) {
		// n + 1 个数
		int first = firstGreatOrEqual2(a, n, key);
		int last = firstGreat2(a, n, key);
		return last - first;
	}
	
	public int firstGreatOrEqual2(int[] a, int n, int key) {
		// n + 1 个数
		int low = 0;
		int high = n;
		int mid = 0;
		while (low <= high) {
			mid = low + ((high - low) >> 1);
			if (key <= a[mid]) {
				high = mid - 1;
			} else {
				low = mid + 1;
			}
		}
		return low;
	}
	
	public int firstGreat2(int[] a, int n, int key) {
		// n + 1 个数
		int low = 0;
		int high = n;
		int mid = 0;
		while (low <= high) {
			mid = low + ((high - low) >> 1);
			if (key < a[mid]) {
				high = mid - 1;
			} else {
				low = mid + 1;
			}
		}
		return low;
	}


总结下:

1、写此文章的目的是总结多种二分查找相似问题,网上的太多代码,边界条件杂乱且不容易理解。这里先总结出最基本的三种情况代码,再用三种情况的代码求解相似问题,理解复杂度降低。

2、一些问题,需要自己多总结,才能有理解深刻,才能写出最适合自己理解的代码。

本文代码已测试过,如有错误,请不吝赐教。




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

二分查找算法(递归与非递归两种方式)

首先说说二分查找法。 二分查找法是对一组有序的数字中进行查找,传递相应的数据,进行比较查找到与原数据相同的数据,查找到了返回1,失败返回对应的数组下标。 采用非递归方式完成二分查找法。java代码如...

二分查找

刚学完一些基础的数据结构与算法,想借此机会与大家分享一些学习所得。第一次写博客,言语不当,请海涵,如有错误,请指正。 那下面我就来总结一下二分查找的基础算法与改进思路:1,基础算法 二分查找是基于...

二分查找

转自:http://www.cppblog.com/converse/archive/2009/10/05/97905.html 二分查找算法基本思想 二分查找算法的前置条件是,一个已经排序好的序...

二分查找(递归与非递归)

递归方法 int BinSearch(int Array[],int low,int high,int key/*要找的值*/){ if (low
  • q3498233
  • q3498233
  • 2009年08月06日 17:04
  • 42729

你真的会二分查找吗?

引用请注明出处:http://blog.csdn.net/int64ago/article/details/7425727        看到这个标题无论你是处于怎样的心理进来看了,我觉...
  • int64Ago
  • int64Ago
  • 2012年04月04日 16:28
  • 40943

二分搜索

使用递归算法实现二分搜索。【输入:一个一维整型数组和一个待查询的值;输出:待查询值所在的位置,如果没有找到,则返回-1。】 二分搜索算法运用的是分治策略。分治法的基本思想:讲一个规模为N的问题分解为...

二分查找中的边界问题:+1,-1,<,<=

题目描述 统计一个数字在排序数组中出现的次数。 分析: 把边界确定更加准确点,[left,end]确定为闭区间,只要不在这个区间,就+1或者-1,不要模糊,不要模糊两可 class Solut...

二分边界

二分区间可以是左闭右开,或者都闭也行。     如果是都闭,判断条件是while(L   总之二分的条件很灵活,判断条件也可以是L   如果二分浮点型的就不会出现这样的问题。...

查找中的算法----HASH查找,二分查找,堆查找,B树查找,字典树,海量查找

查找中的算法----HASH查找,二分查找,堆查找,海量查找

编程之美之二分查找总结

二分查找
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二分查找各种情况大总结
举报原因:
原因补充:

(最多只允许输入30个字)