关闭

Matlab点运算之灰度直方图

% 灰度直方图  它描述了一副图像的灰度级统计信息,主要应用于图像分割和图像灰度变换等应用当中 %  从数学的角度来看,图像直方图描述的是图像各个灰度级别的统计特性,它是灰度值的函数,统计一副图像中各个灰度级出 % 现的次数或者概率。有一种特殊的直方图称为归一化直方图,可以直接反应不同的灰度级出现的比率。 %  从图形上来说,灰度直方图是一个二维的图,纵坐标为图像中各个像素点的灰度级别,纵坐...
阅读(5) 评论(0)

边缘文本检测:快速的和健壮的场景文本定位算法的研究

论文原文:http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7780757 该论文的目标任务是什么? 做边缘文本检测,快速的和健壮的场景文本定位算法的研究,为文字识别提供定位的算法 1. 应用场景是什么? 文字识别体系中,不同中场景,不同种文字的快速准确定位。 实际的生活应用包括:图像与视频检索、多国语言翻译、自动助理等 ...
阅读(17) 评论(0)

概率性机器学习与人工智能

原文链接:Probabilistic machine learning and artificial intelligence 该论文的目标任务是什么? 这篇综述提供了对概率框架的描述,并且讨论了在这一领域最为先进的技术,换句话说,是概率编程、贝叶斯优化、数据压缩和自动模式识别。 1. 应用场景是什么? 机器学习面临的未来的数据和将来的行为引发的结果是不确定的,概率理论提供了一...
阅读(29) 评论(0)

读完论文要回答的问题

觉得有用的论文多读几遍理解一下就会好很多。 理解过程中,始终记得: **该论文的目标任务是什么? 1. 应用场景是什么? 2. 现存的问题瓶颈? 3. 已有最佳方法从哪些思路去解决的? 4. 该论文的解决思路? 5. 具体方法? 6. 还存在的问题? 7. 该论文的解决思路能否用到其他什么任务中? 好的解决思路要总结出来!!这是读完一篇论文的收获。...
阅读(31) 评论(0)

我们理解高级视觉吗?---读后总结

原文链接:Do we understand high-level vision? 高级视觉缺乏一个唯一的,一致性的定义。最近几十年的工作大多数都集中在对象的识别问题上,主要是在视觉系统的一个场景当中去识别一个或者一群对象。重要的是在其中忽略了对象的位置、大小、光线以及它周围所呈现的物体。当对象识别作为了高层视觉的操作框架的时候,仅仅通过视觉神经来解决问题显然已经不足以解决问题了。所以作者将在...
阅读(32) 评论(0)

如何发表论文

昨天晚上和导师聊了一下,下面的经验主要是她给我分享的,我自己补充了一点点自己的见解。 发论文流程: 第一大步:掌握行业基础 1, 先选中感兴趣的一篇(里面会涉及到行业中的一项研究),彻底理解了; 2, 将该论文中的相关概念、技术,都查清楚搞懂; 3, 将该论文的Reference中非常相关的论文读几篇,理解了; 4, 找到该论文的源代码,在自己机器上搭建实验平台并将源码跑通; ...
阅读(25) 评论(0)

2.1最简单的结构——线性表

第二章序言 上一章的两节介绍了常用的算法,这些算法用来处理零散的数据。实际上我们有时候处理的数据之间是存在一种或者多种特定的关系时,我们称这些关系为结构。通常数据之间有三种基本的机构。 (1)线性结构:数据元素之间为一对一的关系。 (2)树形结构:数据元素之间为一对多的关系。 (3)网状结构:数据元素之间为多对多的关系。 什么是线性表? 线性表示最基本、最简单、也是最常...
阅读(43) 评论(0)

6.5OpenCV漫水填充

一、定义 所谓漫水填充,简单来说,就是自动选中了和种子点相连的区域,接着将该区域替换成指定的颜色,这是个非常有用的功能,经常用来标记或者分离图像的一部分进行处理或分析.漫水填充也可以用来从输入图像获取掩码区域,掩码会加速处理过程,或者只处理掩码指定的像素点。 以此填充算法为基础,类似photoshop的魔术棒选择工具就很容易实现了。漫水填充(FloodFill)是查找和种子点联通的颜色相同...
阅读(34) 评论(0)

论文阅读方法

一、先看综述 先读综述,可以更好地认识课题,知道已经做出什么,自己要做什么,,还有什么问题没有解决。 对于国内文献一般批评的声音很多.但它是你迅速了解你的研究领域的入口,在此之后,你再看外文文献会比一开始直接看外文文献理解的快得多。而国外的综述多为本学科的资深人士撰写,涉及范围广,可以让人事半功倍。 二、有针对地选择文献 针对你自己的方向,找相近的论文来读,从中理解文章中回答什么问题,通过...
阅读(569) 评论(0)

递归神经网络对中文字符的读写——读后感

论文链接:Drawing and Recognizing Chinese Characters with Recurrent Neural Network 一、文章标题 从标题我们可以看出本文的研究内容是采用递归神经网络实现的中文字符读写的基本操作,我们可以联想到对中文字符的读取是不是识别,那么写又是什么呢?什么又是递归神经网络? 二、看摘要 Previous research has...
阅读(33) 评论(0)

CNN的全面解析

目录 1、卷积神经网络 2、基本操作 4、pooling层BP 5、im2col 6、code 1、卷积神经网络 卷积神经网络(convolutional neural network)是利用模型特性来处理掉输入的波动而获得不变性特征,由LeCun提出,目前广泛的应用于图像数据。2、基本操作 卷积操作主要是f(x)g(x)在重合区域的积分。 一维卷积 如下图所示,是一维卷积。...
阅读(56) 评论(0)

深度学习框架的评估与比较

人工智能无疑是计算机世界的前沿领域,而深度学习无疑又是人工智能的研究热点,那么现在都有哪些开源的深度学习工具,他们各自的优缺点又是什么呢?最近zer0n和bamos在GitHub上发表了一篇文章,对Caffe、CNTK、TensorFlow、Theano和Torch等深度学习工具从网络、模型能力、接口、部署、性能、架构、生态系统、跨平台等方面做了比较。 网络和模型能力 Caffe可能是第一个主...
阅读(61) 评论(0)

6.4OpenCV形态学图像处理:开运算、闭运算、形态学梯度、顶帽、黑帽

一、案例分析 1、开运算 开运算(Opening Operation),其实就是先腐蚀后膨胀的过程。其数学表达式如下: 开运算可以用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积。 //-----------------------------------【头文件包含部分】------------------------------------...
阅读(41) 评论(0)

1.2算法基本举例(下篇)

1.递归算法 定义:是一种直接或者间接调用自身的算法。 实质:把求解的问题转换为规模缩小了的同类问题的子问题,然后递归调用函数来表示函数的解,通过多次的递归调用,最终可以求出最小问题的解,再返回上层调用,不断地重复,最终得到解的过程。 四个特性: (1)必须有可最终达到的终止条件,否则程序将陷入无穷循环; (2)子问题在规模上比原问题小,或更接近终止条件; (3)子问题可通...
阅读(34) 评论(0)

1.1基本算法举例(上篇)

#include #include /*算法的作用:通过一种数学思想找到问题的解决方案*/ //看商品猜价格 void guessPrice() {     int oldPrice,price=0,i=0;     printf("请设置商品的价格:");     scanf("%d",&oldPrice);     system("cls");     p...
阅读(48) 评论(0)

6.5OpenCV双边滤波

基本原理:   双边滤波器是针对高斯平滑的提升版本,高斯平滑根据像素邻域的距离决定权重,生成权重的函数为高斯函数,所以叫高斯平滑或者高斯滤波,效果是使图像模糊,并一定程度上的保存边缘,双边滤波的改进是增加了灰度值的影响,也就是邻域的像素灰度值如果和中心像素的灰度值越接近,那么权值在高斯权值的基础上在加上一个相对较大的权值,相反,如果灰度差很大,将会给已生成的高斯模板对应的位置加上一个小的权值,以...
阅读(46) 评论(0)

6.4OpenCV中值滤波

无论是直接获取的灰度图像,还是由彩色图像转换得到的灰度图像,里面都有噪声的存在,噪声对图像质量有很大的影响。进行中值滤波不仅可以去除孤点噪声,而且可以保持图像的边缘特性,不会使图像产生显著的模糊,比较适合于实验中的人脸图像。    中值滤波是一种非线性的信号处理方法,因此中值滤波器也就是一种非线性的滤波器。在一定条件下,其可以克服线性滤波器处理图像细节模糊的问题,而且它对滤除脉冲干扰和图像扫描噪...
阅读(33) 评论(0)

图像噪声简介

一、什么是图像噪声? 噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。 二、噪声来源—两个方面 (1)图像获取过程中 两种常用类型的图像传感器CCD和CMOS采集图像过程中,由于受传感器材料属性、工作环境、电子元器件和电路结构等影响,会引入各种噪声,如电阻...
阅读(46) 评论(0)

图像深度简笔

1.定义:图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率的参数。2.详细介绍:图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数。它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级。比如一幅单色图像,若每个像素有8位,则最大灰度数目为2的8次方,即256。一幅彩色图像RGB3个分量的像素位数分别为4,4,2,则最大颜色数目为2的4+...
阅读(42) 评论(0)

2.3OpenCV程序计时

#include #include using namespace std; using namespace cv; void main() { int s = 0; double time0 = static_cast(getTickCount());//取得开始时间 for (size_t i = 0; i < 100000; i++) { s += i; } time0...
阅读(33) 评论(0)
30条 共2页1 2 下一页 尾页
    个人资料
    • 访问:1664次
    • 积分:297
    • 等级:
    • 排名:千里之外
    • 原创:26篇
    • 转载:1篇
    • 译文:3篇
    • 评论:0条
    文章存档