关闭

【Leetcode】Range Sum Query 2D - Immutable

2227人阅读 评论(0) 收藏 举报
分类:

题目链接:https://leetcode.com/problems/range-sum-query-2d-immutable/
题目:

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

Range Sum Query 2D
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

Note:

  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2.

思路:

简单。。。

算法

int s[][];  
    public  NumMatrix(int[][] matrix) {  
        if (matrix.length != 0) {  
            s = new int[matrix.length][matrix[0].length];  
            s[0][0] = matrix[0][0];  
            for (int i = 1; i < matrix.length; i++) {  
                s[i][0] = s[i - 1][0] + matrix[i][0];  
            }  
            for (int j = 1; j < matrix[0].length; j++) {  
                s[0][j] = s[0][j - 1] + matrix[0][j];  
            }  
            for (int i = 1; i < matrix.length; i++) {  
                for (int j = 1; j < matrix[0].length; j++) {  
                    s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + matrix[i][j];  
                }  
            }  
        }  
    }  
  
    public int sumRegion(int row1, int col1, int row2, int col2) {  
        int s2 = 0, s3 = 0, s4 = 0;  
        if (col1 - 1 >= 0)  
            s2 = s[row2][col1 - 1];  
        if (row1 - 1 >= 0)  
            s3 = s[row1 - 1][col2];  
        if (row1 - 1 >= 0 && col1 - 1 >= 0)  
            s4 = s[row1 - 1][col1 - 1];  
        return s[row2][col2] - s2 - s3 + s4;  
    }  


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:516094次
    • 积分:8087
    • 等级:
    • 排名:第2495名
    • 原创:305篇
    • 转载:6篇
    • 译文:0篇
    • 评论:34条
    博客专栏
    文章分类
    最新评论