Poj-1410-Intersection

原创 2015年11月19日 18:47:02
Description
You are to write a program that has to decide whether a given line segment intersects a given rectangle. 
An example: 
line: start point: (4,9) 
end point: (11,2) 
rectangle: left-top: (1,5) 
right-bottom: (7,1) 
  
Figure 1: Line segment does not intersect rectangle 
The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid. 
Input
The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format: 
xstart ystart xend yend xleft ytop xright ybottom 
where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.
Output
For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.
Sample Input
1
4 9 11 2 1 5 7 1
Sample Output
F

这道题的大概意思让你输出一个数n,代表有多少个测试样例,然后接下来的n行分别有8个数,前四个代表一个线段的两个端点坐标,后四个代表一个矩形的左上顶点和右下顶点坐标(不是按顺序给出的),如果线段与矩形相交,输出“T”,否则输出“F”。

思路:题目的意思很简单,本来以为是道水题,判断线段是否相交即可,结果坑点多多。需注意的地方:矩形的左上顶点和右下顶点不是按顺序给的,需要自己判断;如果线段在矩形内部,也算相交。所以我们需要先判断矩形的顶点坐标,然后先判断是否有线段的端点在其内部或边上,若有,输出“T”,没有则判断是否线段与矩形的边是否相交即可,在判断是否相交的时候,要先特判是否矩形的某条边是线段的一部分,因为重合也算相交啊(因为漏判wa了两天,刚想通,都是泪啊),其次判断是否相交,用叉乘判即可。

如何判断线段是否相交,例如线段AB和线段CD,线段AB与线段CD相交的充要条件是A点和B点分别在直线CD两边或在其上,且C点和D点分别在直线AB两端或在其上。

代码如下:

#include <algorithm>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
using namespace std;
struct note
{
    double x1;
    double y1;
    double x2;
    double y2;
};
struct note a[5];
//求最大值
double big(double a,double b)
{
    return a>b?a:b;
}
//求最小值
double small(double a,double b)
{
    return a<b?a:b;
}
//判断线段是否有端点在矩形内部或边上(用坐标)
int neibu(note p,note q)
{
    if(q.x1<=p.x1&&p.x1<=q.x2&&q.y2<=p.y1&&p.y1<=q.y1)
        return 1;
    if(q.x1<=p.x2&&p.x2<=q.x2&&q.y2<=p.y2&&p.y2<=q.y1)
        return 1;
    return 0;
}
//叉乘判断一个点在直线的哪一边或在直线上
int chacheng(double x1,double y1,double x2,double y2)
{
    if(x1*y2-x2*y1<0)
        return 1;
    else if(x1*y2-x2*y1==0)
        return 0;
    else
        return -1;
}
//判断矩形是否和线段相交
int xiangjiao(note p,note q)
{
    //特判矩形的某条边是否为线段的一部分
    if(p.x1==p.x2&&(p.x1==q.x1||p.x1==q.x2)&&small(p.y1,p.y2)<q.y2&&big(p.y1,p.y2)>q.y1)
        return 1;
    if(p.y1==p.y2&&(p.y1==q.y1||p.y1==q.y2)&&small(p.x1,p.x2)<q.x1&&big(p.x1,p.x2)>q.x2)
        return 1;
    //判断线段是否和矩形的边相交
    if((chacheng(p.x2-p.x1,p.y2-p.y1,q.x1-p.x1,q.y1-p.y1)*chacheng(p.x2-p.x1,p.y2-p.y1,q.x1-p.x1,q.y2-p.y1)<0)&&(chacheng(0,q.y2-q.y1,p.x1-q.x1,p.y1-q.y1)*chacheng(0,q.y2-q.y1,p.x2-q.x1,p.y2-q.y1)<0))
        return 1;
    if((chacheng(p.x2-p.x1,p.y2-p.y1,q.x1-p.x1,q.y1-p.y1)*chacheng(p.x2-p.x1,p.y2-p.y1,q.x2-p.x1,q.y1-p.y1)<0)&&(chacheng(q.x2-q.x1,0,p.x1-q.x1,p.y1-q.y1)*chacheng(q.x2-q.x1,0,p.x2-q.x1,p.y2-q.y1)<0))
        return 1;
    if((chacheng(p.x2-p.x1,p.y2-p.y1,q.x2-p.x1,q.y2-p.y1)*chacheng(p.x2-p.x1,p.y2-p.y1,q.x2-p.x1,q.y1-p.y1)<0)&&(chacheng(0,q.y1-q.y2,p.x1-q.x2,p.y1-q.y2)*chacheng(0,q.y1-q.y2,p.x2-q.x2,p.y2-q.y2)<0))
        return 1;
    if((chacheng(p.x2-p.x1,p.y2-p.y1,q.x2-p.x1,q.y2-p.y1)*chacheng(p.x2-p.x1,p.y2-p.y1,q.x1-p.x1,q.y2-p.y1)<0)&&(chacheng(q.x1-q.x2,0,p.x1-q.x2,p.y1-q.y2)*chacheng(q.x1-q.x2,0,p.x2-q.x2,p.y2-q.y2)<0))
        return 1;
    return 0;
}
int main()
{
    int n;
    scanf("%d",&n);
    while(n--)
    {
        scanf("%lf %lf %lf %lf",&a[0].x1,&a[0].y1,&a[0].x2,&a[0].y2);
        scanf("%lf %lf %lf %lf",&a[1].x1,&a[1].y1,&a[1].x2,&a[1].y2);
        //判断矩形的左上顶点和右下顶点坐标
        if(a[1].x1>a[1].x2)
        {
            double tx;
            tx=a[1].x1;
            a[1].x1=a[1].x2;
            a[1].x2=tx;
        }
        if(a[1].y1<a[1].y2)
        {
            double ty;
            ty=a[1].y1;
            a[1].y1=a[1].y2;
            a[1].y2=ty;
        }
        //判断线段是否有端点在矩形内部或边上
        if(neibu(a[0],a[1]))
        {
            printf("T\n");
            continue;
        }
        //判断线段是否和矩形相交
        if(xiangjiao(a[0],a[1]))
            printf("T\n");
        else
            printf("F\n");
    }
    return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载,如有需要,请联系博主。联系方式:手机号码:18940923652,QQ号码:1941502220

相关文章推荐

poj1410 - Intersection

想看更多的解题报告:http://blog.csdn.net/wangjian8006/article/details/7870410              ...

poj1410 简单计算几何

题目链接:http://poj.org/problem?id=1410 题意:判断一条线段与一个矩形(四条边以及中间包含的部分)是否相交 思路:线段是否与四条边非规范相交,线段在矩形内部且与任一边...

POJ1410Intersection【判断线段与矩形相交+点在矩形内的简单判定】

Language:Default Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissi...

POJ 1410 Intersection(线段与矩形相交)

判断矩形和线段是否相交,没什么说的,正确理解题意中相交的定义具体代码:#include #include #include using namespace std; typedef struct { ...

周末小测——A(POJ 1410 Intersection(计算几何))

我只想吐槽下,找来这道题的同学,本来抱着有第一题

POJ1410--Intersection--点积叉积的应用

Description You are to write a program that has to decide whether a given line segment intersects a...

POJ 1410 Intersection (判断线段是否与矩形相交)

题目大意:给定一条线段的起始和终止点的坐标,和一个矩形的左上和右下的坐标,判断线段是否与矩形相交。注意:矩形是实心       的,而且矩形的两点坐标不一定是按照左上、右下的顺序。 解题思路:首...

POJ 1410 Intersection

这道题有个地方比较坑人  也是大家看题没看仔细    题目说了  不一定是按左上和右下给定矩形的(在这WRONG了多次)多么痛的领悟   渣渣般的英语啊 注意这点后就没什么难的了 #inclu...

POJ 1410 Intersection(判断线段是否在矩形面里)

题意:给你线段和矩形,问是否相交,或矩形包含线段; 注意:线段相交时, 和 不相交。。。。郁闷死了。。 #include #include #include #include #inclu...

poj 1410 Intersection

题目描述良心大大地坏,大家一定要注意最后输入矩形的时候不一定是左上右下的输入,所以要做判断 根据题目意思,一条线段和矩形相交就是分成两部分: 1)矩形的四条边之一和这条线段相交 2)这条线段有一...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)