Binary Indexed Trees[二进制索引树]

转载 2016年08月30日 10:12:58

英文原文链接:链接地址

蓝色是笔者注释,高手请忽略

简介

为了使我们的算法更快,我们总是需要一些数据结构。在这篇文章中我们将讨论二进制索引树(Binary Indexed Tree)。依据Peter M. Fenwick,这个数据结构首先用于数据压缩。现在它多用于存储频率和操作累计频率表。


问题定义如下:我们有N个盒子。通常的操作是

1. 在第i个盒子中加入球

2. 求从盒子l到盒子k中球的总和


最天真的做法对于操作1而言时间复杂度是O(1),对于操作2的时间复杂度是O(n)。假设我们查询m次,最坏情况下操作的时间复杂度是O(m*n)。使用一些数据结构(例如RMQ我也不知道是什么东西)可以将这个问题的最差时间复杂度控制在O(m*lg n)。另一种解决方式就是使用Binary Indexed Tree数据结构,最坏情况下的时间复杂度依然是O(m*lg n),然是Binary Indexed Tree更容易编码,也有更小的空间使用量,相比RMQ而言。

注记

BIT Binary Indexed Tree 二进制索引树
MaxVal  maximum value which will have non-zero frequency 非零最大值
f[i] frequency of value with index i, i = 1 .. MaxVal 这个可以理解为每个盒子中小球的个数
c[i] cumulative frequency for index i (f[1] + f[2] + ... + f[i])
tree[i] sum of frequencies stored in BIT with index i (latter will be described what index means); sometimes we will write tree frequency instead sum of frequencies stored in BIT  
在BIT中存储的频率(小球个数)的和;有时在BIT中我们使用tree 频率来替代频率和
num¯ complement of integer num (integer where each binary digit is inverted: 0 -> 1; 1 -> 0 )  求num的反
  NOTE: Often we put f[0] = 0, c[0] = 0, tree[0] = 0, so sometimes I will just ignore index 0.





基本思路

每个整数都可以表示为2的次幂的和。同理,累计的频率也可以表示为子频率集合的和。在我们这篇文章里,每一个集合含有一些连续但互补重合的频率子集。

idx是BIT的索引,r是idx以二进制表示后最右侧的0的位置( 很绕口,解释一下哈。比如idx为12,二进制为1100,则r=2。再来一个,idx=9,二进制1001, 则r=0)。那么tree[idx]是从 ( idx  - 2^ r  + 1)到idx的平率和(看表1.1)(即f[idx - 2^r + 1]+...f[idx])。同时我们还说idx是负责(responsible)从(idx - 2^r + 1)到idx的索引(  注意,这里是算法的关键,也是操作tree的方法)

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 0 2
c 1 1 3 4 5 8 8 12 14 19 21 23 26 27 27 29
tree 1 1 2 4 1 4 0 12 2 7 2 11 3 4 0 29

  table 1.1

(Tips:不要尝试去推理f(i)的值,因为这是给定的例子。c[i]和tree[i]是计算的结果,需要理解)


  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
tree 1 1..2 3 1..4 5 5..6 7 1..8 9 9..10 11 9..12 13 13..14 15 1..16

table1.2 responsibility 表 (即tree[i]表示是f[]~f[]的和,例如tree[10]=f[9]+f[10])

image 1.3 tree 负责的index(bar显示的是累加的频率)
 
image 1.4 带有tree频率和的tree

假设我们要寻找index 13的累加频率。在二进制表示中,13表示为1101。据此我们计算c[1101]=tree[1101]+tree[1100]+tree[1000]。

找出最后的1

我们需要多次的从二进制数中获得最后一个1,所以我们需要一个高效的方法。假设我们想从num中获取最后的1.在二进制中num可以表示为a1b,a代表最后一个1之前的所有二进制位,b表示在这个1之后的0.
-num  = (a1b)¯+ 1 = a¯0b¯ + 1.  由于b全市由0构成,所以b¯全部是1.由此可得
-num = (a1b)¯ + 1 = a¯0b¯ + 1 = a¯0(0...0)¯ + 1 = a¯0(1...1) + 1 = a¯1(0...0) = a¯1b.
我们现在可以简单的获得最后一个1,让num和-num做位与运算:

           a1b
&      a¯1b
--------------------
= (0...0)1(0...0)


读取累计的频率和
如果我们需要读取整数idx的频率累计和,我们可以让sum加上tree[idx]的值,然后让idx减去最有一个1(我们也可以说移走最后的1,使最后的1变为0),然后重复上述过程直至idx为0.我们可以使用下面这段代码(C++)。
1 int read(int idx){
2     int sum = 0;
3     while (idx > 0){
4         sum += tree[idx];
5         idx -= (idx & -idx);
6     }
7     return sum;
8 }

举例: idx=13,sum=0:


iteration idx position of the last digit idx & -idx sum
1 13 = 1101 0 1 (2 ^0) 3
2 12 = 1100 2 4 (2 ^2) 14
3 8 = 1000 3 8 (2 ^3) 26
4 0 = 0 --- --- ---

 
image 1.5 箭头指示了在遍历过程中使用的数据.

所以我们的结果是26.这个函数中遍历的次数是idx含有的1的个数,最大的便利次数也就是log MaxVal。
时间复杂度: O(log MaxVal).
代码的复杂度: 如上代码

改变一些位置的频率并更新tree

当改变某些位置的频率时,所有tree中负责该位置的都需要更新。在读取idx的累计和时我们移走idx最后的1并且循环继续。修改tree中的一些值val时,我们需要增加当前idx的tree值tree[idx],增加idx最后一位的1(例如idx为6,该值增加了val,当tree[6]增加了val后。6的最后等于1的一位是2,所以6+2=8,需要继续修改tree[8]的值)并且循环继续之前的过程,只要idx小于MaxVal.C++写的函数如下
1 void update(int idx ,int val){
2     while (idx <= MaxVal){
3         tree[idx] += val;
4         idx += (idx & -idx);
5     }
6 }
例如idx=5:
iteration idx position of the last digit idx & -idx
1 5 = 101 0 1 (2 ^0)
2 6 = 110 1 2 (2 ^1)
3 8 = 1000 3 8 (2 ^3)
4 16 = 10000 4 16 (2 ^4)
5 32 = 100000 --- ---

image 1.6 更新idx为5的频率时遍历的顺序
使用如上算法我们可以更新整个BIT。
时间复杂度: O(log MaxVal)
代码长度:最长10行

读取某个位置的频率值

(未翻译)

整个树乘以或除以某个常数

(未翻译)

给定累计的频率值,找出index(翻译这么多终于到我要用的地方了)

最笨最天真的解决方法就是遍历整个索引,计算累计频率,检查是否等于给定的值。如果考虑存在负数的话,这是唯一解决方案。但是如果我们只有非负的频率值的话(也就是说对于递增的index,累计频率值不减少)我们可以找到指数级的算法,这个算法由二分搜索修改而来。逐步遍历所有的位(从最高为开始),比较当前index的累计频率和给出的值,依据大于小于结果选择高一半或者低一半(就像二分查找)。C++写的函数如下:
01 // if in tree exists more than one index with a same
02 // cumulative frequency, this procedure will return
03 // some of them (we do not know which one)
04  
05 // bitMask - initialy, it is the greatest bit of MaxVal
06 // bitMask store interval which should be searched
07 int find(int cumFre){
08     int idx = 0; // this var is result of function
09      
10     while ((bitMask != 0) && (idx < MaxVal)){ // nobody likes overflow :)
11         int tIdx = idx + bitMask; // we make midpoint of interval
12         if (cumFre == tree[tIdx]) // if it is equal, we just return idx
13             return tIdx;
14         else if (cumFre > tree[tIdx]){
15                 // if tree frequency "can fit" into cumFre,
16                 // then include it
17             idx = tIdx; // update index
18             cumFre -= tree[tIdx]; // set frequency for next loop
19         }
20         bitMask >>= 1; // half current interval
21     }
22     if (cumFre != 0) // maybe given cumulative frequency doesn't exist
23         return -1;
24     else
25         return idx;
26 }
27  
28  
29  
30 // if in tree exists more than one index with a same
31 // cumulative frequency, this procedure will return
32 // the greatest one
33 int findG(int cumFre){
34     int idx = 0;
35      
36     while ((bitMask != 0) && (idx < MaxVal)){
37         int tIdx = idx + bitMask;
38         if (cumFre >= tree[tIdx]){
39                 // if current cumulative frequency is equal to cumFre,
40                 // we are still looking for higher index (if exists)
41             idx = tIdx;
42             cumFre -= tree[tIdx];
43         }
44         bitMask >>= 1;
45     }
46     if (cumFre != 0)
47         return -1;
48     else
49         return idx;
50 }

当cumFre为21 时调用find的情况:

First iteration tIdx is 16; tree[16] is greater than 21; half bitMask and continue
Second iteration tIdx is 8; tree[8] is less than 21, so we should include first 8 indexes in result, remember idx because we surely know it is part of result; subtract tree[8] of cumFre (we do not want to look for the same cumulative frequency again - we are looking for another cumulative frequency in the rest/another part of tree); half bitMask and contiue
Third iteration tIdx is 12; tree[12] is greater than 9 (there is no way to overlap interval 1-8, in this example, with some further intervals, because only interval 1-16 can overlap); half bitMask and continue
Forth iteration tIdx is 10; tree[10] is less than 9, so we should update values; half bitMask and continue
Fifth iteration tIdx is 11; tree[11] is equal to 2; return index (tIdx)

时间复杂度: O(log MaxVal)
代码长度: 小于20行

相关文章推荐

Binary Indexed Tree(二进制索引树、树状数组)

今天在刷leetcode时遇到了一道可以使用Binary Indexed Tree的题,以前未接触过,记下来以便以后复习 Binary Indexed Tree(树状数组)是一种树型数据结构,用于...

binary indexed tree 二分索引树 树状数组

参考: https://www.byvoid.com/blog/binary-index-tree http://www.cnblogs.com/sixdaycoder/p/4348360.html...

Binary Indexed Trees

Binary Indexed Trees  摘自:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=binar...

Algorithm Tutorials Binary Indexed Trees (树状数组)

最开始学习树状数组的时候,翻遍了各种帖子,也把刘汝佳的入门经典196也翻了个N遍,可还是不怎么看的明白,无意中发现了这个教程,讲的嘛,反正我个人觉得非常好,自己水平一般,要不然看了N遍的帖子都不明白,...

树状数组Binary Indexed Trees详解与Java实现

WiKi树状数组是由Peter Fenwick在1994年提出的,所以又称为Fenwick Tree。数组的区间求和的复杂度是O(n),树状数组可以将数组区间求和的复杂度降低到O(lg n)。这对于长...

Go指南练习之《等价二叉树》(Equivalent Binary Trees)

Go官网指南 练习原文 实现 WordCount。它应当返回一个含有 s 中每个 “词” 个数的 map。函数 wc.Test 针对这个函数执行一个测试用例,并输出成功还是失败。 ...

[LeetCode] Unique Binary Search Trees n结点二叉搜索树的数目

声明:原题目转载自LeetCode,解答部分为原创 Problem : Given n, how many structurally unique BST's (binary ...
  • xblog_
  • xblog_
  • 2017年04月03日 21:04
  • 68

Leetcode 96 Unique Binary Search Trees(独一的二叉搜索树)

一,问题描述 1,给定一个n,返回所有的二叉搜索树的总数。2,例如: 输入:n=4 输出:14输入:n=3 输出:5输入:n=5 输出:42输入:n=6; 输出:132输入: n=2 输...

LeetCode:Unique Binary Search Trees(二叉查找树)

一、BST特点 若任意节点的左子树不空,则左子树上所有结点的值均小于或等于它的根结点的值; 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 任意节点的左、右子树也分别为二叉查找树。...

LeetCode | Unique Binary Search Trees II(构建二叉搜索树)

Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. Fo...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Binary Indexed Trees[二进制索引树]
举报原因:
原因补充:

(最多只允许输入30个字)