关闭

人群与社会——第四周

480人阅读 评论(0) 收藏 举报
分类:

4.1  博弈论的几个要素

博弈的条件:情景-》博弈-》求解

博弈:必须大于等于2个人进行博弈

每个人都是理性的,每个人会选择个人利益最大化,并且他知道别人也是追求利益最大化的。

博弈的决策条件:不商量,每个人让自己利益最大化。

4.2 考试-报告博弈和囚徒博弈

考试-报告博弈里面,两个人都有严格占优策略,所以他们都会选择严格占优策略。


对于你来说,如果对方准备报告,你复习比准备占优(92》90),如果对方复习,你复习比准备占优(88》86);

对于你的对手来说,如果你复习,对手复习比报告占优(88》86), 如果你准备报告,对手复习比准备报告占优(92》90);

所以,当出现严格占优策略时,一定选择严格占优策略。


囚徒博弈里面,两个人也都有严格占优策略,所以当两个人都出现严格占优策略时,都会选择严格占优策略。


对于囚徒困境:疑犯1的严格占优策略是坦白,疑犯2的严格占优策略也是坦白,虽然严格占优策略并不是最有的策略,但是因为大家是独立思考的,不能够相关的讨论。


公司营销博弈:只有一个公司有严格占优策略,所以这个公司选择严格占优策略,另外一个公司会选择最佳应对策略。

对于公司1,有严格占优策略是廉价,所以公司1一定会选择廉价,而公司2应该选择最优应对,公司2选择廉价是0.12, 选择高档是0.4, 0.4优于0.12, 所以公司2的最佳应对是高档。当一个公司有严格占优策略时,该公司选择严格占优策略,而另外一个公司选择最佳应对。最佳应对一定存在,但可能有多个,因为最佳应对是》的关系,严格最近应对如果存在,则一定唯一。


如果两个人都没有严格占优策略的话,用纳什均衡(两个策略互为最佳应对策略)。

此时,公司1和公司2都没有严格占优策略,针对公司2的策略,公司1对选择AA,BB,CC来分别应对,而针对公司1的策略,公司2会选择AA,BC,CB来分别应对,所以AA策略是互为最佳应对策略的,所以公司1选择A策略,公司2选择A策略。


互为最佳应对的策略组是纳什均衡;

找最佳应对的策略:

分别找到应对策略,如果两个应对都落在同一个格子里面,则这个策略组就是互为最佳应对。


存在多个纳什均衡(协调博弈)


此时存在两个纳什均衡,ppt-ppt,keynote-keynote;仅从博弈的结构上面,不能够进行推导了,此时要引入一些外部的因素来帮助决策;


如果此时存在纳什均衡(),用纳什均衡;

如果存在多个纳什均衡,考虑外部因素(猎鹿博弈);

纳什均衡只能缩小预测范围,但是并不一定给出唯一的预测(鹰鸽博弈);

几种多重博弈均衡的比较:

1.使用ppt或者keynote,2;有偏好的使用ppt和keynote;3.猎鹿博弈;4.鹰鸽博弈;



猎鹿博弈,的博弈均衡发生在猎鹿-猎鹿,猎兔-猎兔,均衡发生在两个人选择一样的;

但是鹰鸽博弈,均衡发生在两个人选择不一样;

博弈有助于缩小范围,但是不能够决定



4.3~4.4 混合博弈:

混合博弈,是重复做多组博弈,会出现一个概率p你做一个选择,1-p的概率做另外一个选择;对方会以q的概率做一个选择,1-q的概率做另外一个选择;

无差异原理,可以得到混合博弈的最佳应对(它们分别使得对方在两个纯策略选择上得到的回报无差异)。

社会最优,两个人获得的总收益最大化。社会最优和纳什均衡有可能一致(理想系统)。



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:26360次
    • 积分:768
    • 等级:
    • 排名:千里之外
    • 原创:54篇
    • 转载:5篇
    • 译文:0篇
    • 评论:0条