FPGA与CPLD的区别

转载 2006年05月18日 23:20:00
系统的比较,与大家共享:[52RD.com]
尽管FPGA和CPLD都是可编程ASIC器件,有很多共同特点,但由于CPLD和FPGA结构上的差异,具有各自的特点:[52RD.com]
①CPLD更适合完成各种算法和组合逻辑,FP GA更适合于完成时序逻辑。换句话说,FPGA更适合于触发器丰富的结构,而CPLD更适合于触发器有限而乘积项丰富的结构。[52RD.com]
②CPLD的连续式布线结构决定了它的时序延迟是均匀的和可预测的,而FPGA的分段式布线结构决定了其延迟的不可预测性。[52RD.com]
③在编程上FPGA比CPLD具有更大的灵活性。CPLD通过修改具有固定内连电路的逻辑功能来编程,FPGA主要通过改变内部连线的布线来编程;FP GA可在逻辑门下编程,而CPLD是在逻辑块下编程。[52RD.com]
④FPGA的集成度比CPLD高,具有更复杂的布线结构和逻辑实现。[52RD.com]
⑤CPLD比FPGA使用起来更方便。CPLD的编程采用E2PROM或FASTFLASH技术,无需外部存储器芯片,使用简单。而FPGA的编程信息需存放在外部存储器上,使用方法复杂。[52RD.com]
⑥CPLD的速度比FPGA快,并且具有较大的时间可预测性。这是由于FPGA是门级编程,并且CLB之间采用分布式互联,而CPLD是逻辑块级编程,并且其逻辑块之间的互联是集总式的。[52RD.com]
⑦在编程方式上,CPLD主要是基于E2PROM或FLASH存储器编程,编程次数可达1万次,优点是系统断电时编程信息也不丢失。CPLD又可分为在编程器上编程和在系统编程两类。FPGA大部分是基于SRAM编程,编程信息在系统断电时丢失,每次上电时,需从器件外部将编程数据重新写入SRAM中。其优点是可以编程任意次,可在工作中快速编程,从而实现板级和系统级的动态配置。[52RD.com]
⑧CPLD保密性好,FPGA保密性差。[52RD.com]
⑨一般情况下,CPLD的功耗要比FPGA大,且集成度越高越明显。

相关文章推荐

FPGA与CPLD的区别

系统的比较,与大家共享:  尽管FPGA和CPLD都是可编程ASIC器件,有很多共同特点,但由于CPLD和FPGA结构上的差异,具有各自的特点:  ①CPLD更适合完成各种算法和组合逻辑,FP G...

FPGA与CPLD的区别

FPGA与CPLD的区别   系统的比较,与大家共享: 尽管FPGA和CPLD都是可编程ASIC器件,有很多共同特点,但由于CPLD和FPGA结构上的差异,具有各...

CPLD与FPGA的区别

今天想和大家分享一下关于CPLD/FPGA的概念和异同点,对这个问题我看过了一些比较好的帖子,所以和大家共勉。 文章转自:http://lucjn.blog.163.com/blog/static/...

FPGA与CPLD区别

声明:本人所写博客是在大量阅读别人的博客以及自己的经验基础上写出来的,既有转载别人的,也有自己平时学习工作的心得,写出来与大家共享,希望大家能够指出其中的错误以及不足之处,多多交流,共同进步。我主要做...

FPGA与CPLD的概念及其区别

一、FPGA与CPLD的基本概念  1.CPLD  CPLD主要是由可编程逻辑宏单元(LMC,Logic Macro Cell)围绕中心的可编程互连矩阵单元组成,其中LMC逻辑结构较复杂,并具有复...

CPLD/FPGA/Verilog_Verilog中阻塞与非阻塞的区别

在Verilog中有两种类型的赋值语句:阻塞赋值语句(“=”)和非阻塞赋值语句(“<=”)。正确地使用这两种赋值语句对于Verilog的设计和仿真非常重要。下面我们以例子说明阻塞和非阻塞赋值的区别。 ...

FPGA与CPLD的区别

系统的比较,与大家共享: 尽管FPGA和CPLD都是可编程ASIC器件,有很多共同特点,但由于CPLD和FPGA结构上的差异,具有各自的特点: ①CPLD更适合完成各种算法和组合逻辑,FP GA更...
  • softn
  • softn
  • 2012-05-02 16:24
  • 195

CPLD和FPGA的区别(2)

可编程逻辑器件主要包括FPGA和CPLD,FPGA是Field Programmable Gate Array缩写,CPLD是Complex Promrammable Logic Device的缩写。...

CPLD与FPGA的主要区别

转载自:http://blog.163.com/li_chuang_ze/blog/static/13600421020119765856122/     FPGA是现场可编程逻辑门阵列的简称,是电...
  • dlldz
  • dlldz
  • 2013-12-20 16:08
  • 363
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)