你应该掌握的——树和二叉树

原创 2012年03月27日 01:05:22

我在上课的时候,由于各种原因,上课老师讲的自己总不爱听,现在到火烧眉毛了,才知道这些基础知识的重要性,现在想想,也没有那么的困难。重在理解这些底层的概念,然后考试考的都是一些很简单的概念和计算,在这里我来阐述一下树和二叉树的一些考点。

基础知识一点也不能马虎。所以我们从最基础的开始说起。


以这棵树来说几个基本的概念。


结点的度:一个结点的子树数目称为该结点的度。(例如结点1的结点的度为3,结点2的结点的度为3,结点3的结点的度为0)。

树的度:所有结点度当中,度最高的一个。(上图树的度是3)。

叶子结点:上图应该是:3、5、6、7、9、10

分之结点:除了叶子结点,其他的都称为分之结点,和叶子结点构成互补的关系。(1、2、4、8)

内部结点:分之结点除了根结点以外的。(2、4、8)

父结点:如5号结点就是2号结点的子结点。

子结点:2号结点是5号结点的父结点。

兄弟结点:5、6、7称为兄弟结点,出自同一个父亲2号结点。

这三个概念是一个相对的概念。

层次:0层、1层、2层、3层。

还有一个公式就能做题了:总结点=所有度结点的和+1(应该是父结点)


树的遍历


我们还是根据这图来看看树的三种遍历。

前序遍历先从根部出发,然后由左向右,一颗一颗树来完成遍历。先访问根再访问叶子结点,这就是我画出来的前序遍历图,箭头的方向表示遍历的顺序。a为起点。


结果是:1、2、5、6、7、3、4、8、9、10


后序遍历顾名思义,就是从叶子结点出发,先遍历叶子结点再到根结点,最后到父结点。我画出顺序可能会更直观点。


结果是:5、6、7、2、3、9、10、8、4、1


层次遍历按0层、1层、2层、3层,从左到右来遍历


结果是:1、2、3、4、5、6、7、8、9、10


我们接着就可以来理解二叉树的重要的特性:

我们找五颗二叉树来进行分析:这样分析就简单多了,我都觉得不用分析了,但是还是说说吧。

1、二叉树中,第i层上最多有2的i次方个结点(i>=0)。这个很基本,这也是二叉树和树的区别。

2、深度为K的二叉树至多有2的(k+1)次方 -1个结点(k>=0)。(深度为二叉树中层数最大的叶节点的层数),满二叉树的深度为2,则共有7个结点。

3、对任何一颗二叉树,如果其叶子结点数为n0,度为2的结点数为n2,则n0=n2+1;(一定不要忘了根结点的度也是2)。


二叉树的遍历


前序遍历应该是怎么个流程呢:我们看图。


遍历的结果是:1、2、4、5、7、8、3、6。从根结点分两部分,先把左边的遍历完,都是从左到右的。


中序遍历:

结果是:4,2,7,8,5,1,3,6。


后序遍历:


结果是:4、8、7、5、2、6、3、1


层次遍历:


结果是:1、2、3、4、5、6、7、8

那么树和二叉树就说这么多,我相信掌握这么多,也差不多够用了哦,对于上面的基础知识,要是我有不对的地方,希望大家指出哈。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

把学习由复杂变简单(二叉树和树)

现在发现二叉树和树讲起来真的是没完没了,刚发表博客之后发现,那还不足以表述这颗大树。我们继续完善。 树与二叉树遍历确实很重要,但是还有一些你也许忘记的重要知识点,我们再来看一下还有什么好玩的:我不太...
  • yi_zz
  • yi_zz
  • 2012-03-29 23:27
  • 22798

树与二叉树(一)

树定义 树是n(n≥0)个结点的有限集,它或为空树(n=0),或为非空树 非空树T满足以下条件:(1) 有且仅有一个称为根的结点;(2)除根结点以外的其余结点可分为m(m>0)个互补相交的有限集T...
  • IT_DS
  • IT_DS
  • 2016-03-05 20:21
  • 1475

关于树和二叉树的基本概念总结

1.什么是(自由)树? 树首先是无向图的一种,并且此无向图要满足下面两个特性: 1)连通,即任何两对顶点之间都有路径相连。 2)无回路,简单地说就是没有成环。 2.什么是森林? 当满足树特性...

【数据结构】树与二叉树的区别

6.二叉树与树的区别? 1)树中结点的最大度数没有限制,而二叉树结点的最大度数为2; 2)树的结点无左、右之分,而二叉树的结点有左、右之分。 7.什么是完全二叉树? 若设二叉树的高度为h,除第 h 层...

树和二叉树(一)

树和二叉树 需要知道的基本概念: 结点、 结点的度、树的度、叶子结点、分支结点、内部结点、父结点、子结点、兄弟结点、层次。 公式:总结点 n = 总度数d + 1 树的遍历: 前序:先访问根结点,...

GitChat · 人工智能 | 除了深度学习,机器翻译还需要啥?

GitChat 作者:魏勇鹏 关注微信公众号:GitChat 技术杂谈 ,一本正经的讲技术 眼球不够,八卦来凑以一个“八卦”作为开头吧。本文开始要写作的时候,翻译圈里出了一个“爆炸性”的事件。6...

原来编译原理可以这么学

最近对数据结构的研究又有了进展,挺好玩的,总结这些内容的同时,希望也能帮助到大家,这样的话,达到双赢,这才是写博客的目的,接下来我们来轻松学习编译原理,不要被这些纸老虎吓着了。我们一步步来看到底是怎么...
  • yi_zz
  • yi_zz
  • 2012-04-09 00:33
  • 44004

[转载]数据结构二叉树深层理解

通过前面的学习,我们知道,有序数组可以利用二分查找法快速的查找特定的值,时间复杂度为O(log2N),但是插入数据时很慢,时间复杂度为O(N);链表的插入和删除速度都很快,时间复杂度为O(1),但是查...

你应该掌握的——树和二叉树

我在上课的时候,由于各种原因,上课老师讲的自己总不爱听,现在到火烧眉毛了,才知道这些基础知识的重要性,现在想想,也没有那么的困难。重在理解这些底层的概念,然后考试考的都是一些很简单的概念和计算,在这里...

你应该掌握的——树和二叉树

我在上课的时候,由于各种原因,上课老师讲的自己总不爱听,现在到火烧眉毛了,才知道这些基础知识的重要性,现在想想,也没有那么的困难。重在理解这些底层的概念,然后考试考的都是一些很简单的概念和计算,在这里...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)