稀疏表示+子空间学习 (ICCV2011)

原创 2012年06月05日 11:09:18

解读文献:L. Zhang, P. Zhu, Q. Hu and D. Zhang, “A Linear Subspace Learning Approach via Sparse Coding,” in ICCV 2011.

网址:http://www4.comp.polyu.edu.hk/~cslzhang/   做稀疏表示做的非常棒,很多发表的paper,都附有code,这魄力,不服不行哈~

 

线性子空间学习(Linear subspace learning,LSL),是通过线性投影,实现高维特征空间到低维空间的映射~

原有方法的缺点:大多的线性子空间学习,是直接从原始训练样本中统计学习子空间~ 但是在计算机视觉中,不同组件贡献也不同~~

现提出:利用稀疏表示和特征分组----->子空间学习~

            首先从训练数据集中学习字典,以便用于稀疏的表示样本~

            字典中的图像组件,分了两类,利于分辨和不利于分辨的部分 (More / Less discriminant part;MDP/LDP)~

            无监督准则/有监督准则---->子空间学习。其中MDP保留,LDP抑制~

 

线性子空间学习方法,包括PCA、Eigenface、Fisher 线性判别式分析、基于LPP(locality preserving projection)流形学习、局部判别式嵌入(local discriminant embedding LDE)、图嵌入(graph embedding)。

根据是否利用训练样本的类别信息,可分为无监督的方法(PCA、LPP)和有监督的方法(FLDA、regularized LDA、LDE)。

线性子空间学习的方法,是通过一种确定的判别函数,学习理想的子空间或者投影方式~  

例如:PCA是寻找一种不相关(即是正交的)的最佳子空间。FLDA是通过最大化(类间方差/类内方差)比率,学习最佳子空间~

高维数据一般处于低维流形上,所以LSL(例如LPP)可以通过保留原始高位数据的几何图,学习子空间~

线性子空间学习中样本方差矩阵计算的问题~  不同组件有着不同的贡献~ 例如:噪声应有较小的贡献~   因此把图像分解为两类不同的组件,一类贡献比较大,一类贡献比较小~

 

稀疏表示(用于压缩、字典学习、影像组件分析)

首先从样本集中基于patch的思想,学习一个字典D,有k个元素/组件。 然后把这k个组件分为两类(MDP和LDP)。然后确定投影矩阵,投影之,进行分类~

本文方法的框架图:

一、字典学习和稀疏编码~

数据集有m个样本x~  每个样本都分为两个部分,MDP和LDP。

 

如果有一个测试样本y,则直接利用P进行投影,计算Py和PX的距离,利用NN进行分类之~

 

利用稀疏表示学习字典D。因为原始图像维数比较高,很难直接学习一个冗余字典。所以基于patch的思想进行学习之~

将每个训练样本分为q个重叠patch,最终由h=m*q的patch,其中m是样本数。

 

 

二、无监督子空间学习

在经过稀疏编码之后,每个图像被分解为k个特征图像。

 

 

三、有监督子空间学习

 

 

注:胡言乱语,可能会有些理解错误~

稀疏子空间聚类、谱聚类的一些个人看法

最近在阅读Ehsan的sparse subspace clustering这篇paper,后来看到这篇paper又完善了一下发了13年的PAMI,去作者主页看了下,作者也就3篇paper,没想到靠这一...
  • silence1214
  • silence1214
  • 2013年10月10日 22:17
  • 14765

稀疏子空间聚类

解读文献:Sparse subspace clustering (cvpr09) 现有的子空间聚类方法,可分为六大类: (本人感觉大都很陌生,)      迭代的:K-subspaces, fit...
  • yihaizhiyan
  • yihaizhiyan
  • 2012年06月15日 16:22
  • 11709

稀疏子空间聚类

  • 2015年09月19日 13:54
  • 6KB
  • 下载

稀疏表示的子空间聚类算法

  • 2014年04月02日 22:35
  • 6KB
  • 下载

4个基本子空间

前面我们已经介绍过矩阵的两个重要空间:列空间和零空间,今天继续介绍矩阵的另外两个重要空间:行空间和左零空间。A的行空间就是AT的列空间,A的左零空间就是AT的零空间,文字描述起来比较拗口,用数学符号表...
  • xdfyoga1
  • xdfyoga1
  • 2014年07月04日 21:05
  • 2805

四大子空间的理解

一.四大子空间 线性代数中,用向量空间的角度去理解求解过程,会使得我们对线代的理解更加的深入。这也运用了数型结合的思想,把直观的几何视觉与严谨的数学计算结合,使得我们解决问题更加的方便。所谓数无形式少...
  • u013400245
  • u013400245
  • 2016年09月21日 13:00
  • 716

子空间算法

设X1,X2,...,XpX_1,X_2,...,X_p为训练样本,每个XiX_i为M维矢量,要求一个N×MN\times M的矩阵A,使得:...
  • u014230646
  • u014230646
  • 2016年06月08日 23:09
  • 1073

稀疏子空间聚类

  • 2015年11月10日 11:01
  • 846KB
  • 下载

聚类系列-概述

本系列要讲解一下本人这一段时间工作中 使用聚类来做的一些事情,第一次写博客大家不喜勿喷,有错误请及时指出,本人一定改正。          聚类,在百度百科中的介绍是将物理或抽象对象的集合分成由...
  • u012500237
  • u012500237
  • 2017年02月27日 16:12
  • 256

子空间稀疏表示

本人菜鸟,从最基础的基础知识点开始说起。               子空间(subspace),由空间中向量子集张成的空间称为原空间的子空间。               无交集的子空间之间的关系称...
  • houdong1992
  • houdong1992
  • 2015年10月10日 09:55
  • 634
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:稀疏表示+子空间学习 (ICCV2011)
举报原因:
原因补充:

(最多只允许输入30个字)