稀疏表示+子空间学习 (ICCV2011)

原创 2012年06月05日 11:09:18

解读文献:L. Zhang, P. Zhu, Q. Hu and D. Zhang, “A Linear Subspace Learning Approach via Sparse Coding,” in ICCV 2011.

网址:http://www4.comp.polyu.edu.hk/~cslzhang/   做稀疏表示做的非常棒,很多发表的paper,都附有code,这魄力,不服不行哈~

 

线性子空间学习(Linear subspace learning,LSL),是通过线性投影,实现高维特征空间到低维空间的映射~

原有方法的缺点:大多的线性子空间学习,是直接从原始训练样本中统计学习子空间~ 但是在计算机视觉中,不同组件贡献也不同~~

现提出:利用稀疏表示和特征分组----->子空间学习~

            首先从训练数据集中学习字典,以便用于稀疏的表示样本~

            字典中的图像组件,分了两类,利于分辨和不利于分辨的部分 (More / Less discriminant part;MDP/LDP)~

            无监督准则/有监督准则---->子空间学习。其中MDP保留,LDP抑制~

 

线性子空间学习方法,包括PCA、Eigenface、Fisher 线性判别式分析、基于LPP(locality preserving projection)流形学习、局部判别式嵌入(local discriminant embedding LDE)、图嵌入(graph embedding)。

根据是否利用训练样本的类别信息,可分为无监督的方法(PCA、LPP)和有监督的方法(FLDA、regularized LDA、LDE)。

线性子空间学习的方法,是通过一种确定的判别函数,学习理想的子空间或者投影方式~  

例如:PCA是寻找一种不相关(即是正交的)的最佳子空间。FLDA是通过最大化(类间方差/类内方差)比率,学习最佳子空间~

高维数据一般处于低维流形上,所以LSL(例如LPP)可以通过保留原始高位数据的几何图,学习子空间~

线性子空间学习中样本方差矩阵计算的问题~  不同组件有着不同的贡献~ 例如:噪声应有较小的贡献~   因此把图像分解为两类不同的组件,一类贡献比较大,一类贡献比较小~

 

稀疏表示(用于压缩、字典学习、影像组件分析)

首先从样本集中基于patch的思想,学习一个字典D,有k个元素/组件。 然后把这k个组件分为两类(MDP和LDP)。然后确定投影矩阵,投影之,进行分类~

本文方法的框架图:

一、字典学习和稀疏编码~

数据集有m个样本x~  每个样本都分为两个部分,MDP和LDP。

 

如果有一个测试样本y,则直接利用P进行投影,计算Py和PX的距离,利用NN进行分类之~

 

利用稀疏表示学习字典D。因为原始图像维数比较高,很难直接学习一个冗余字典。所以基于patch的思想进行学习之~

将每个训练样本分为q个重叠patch,最终由h=m*q的patch,其中m是样本数。

 

 

二、无监督子空间学习

在经过稀疏编码之后,每个图像被分解为k个特征图像。

 

 

三、有监督子空间学习

 

 

注:胡言乱语,可能会有些理解错误~

稀疏子空间聚类、谱聚类的一些个人看法

最近在阅读Ehsan的sparse subspace clustering这篇paper,后来看到这篇paper又完善了一下发了13年的PAMI,去作者主页看了下,作者也就3篇paper,没想到靠这一...

SLAM学习笔记(三)特征提取

转载:http://blog.csdn.net/renshengrumenglibing/article/details/8604245 激光雷达获取的信息是和周围物体之间的距离信息,在移动机器人尤...

一种改进的稀疏子空间聚类算法

  • 2015年09月19日 20:46
  • 240KB
  • 下载

子空间:群论的角度解释无监督深度学习

论文把DL的非监督学习映射为群,是为轨道——稳定集理论。 DL的群映射:轨道——稳定集理论,貌似一种子空间理论。...

线性代数学习2 线性相关、生成子空间、范数、特征分解

线性组合 (linear combination)定义一个包含 kk 个实数变量的集合x1,x2,...,xk x_1,x_2,...,x_k ,且假设已知一个kk个实数权重集合 w1,w2,......
  • xundh
  • xundh
  • 2017年11月17日 08:42
  • 173

机器学习中,什么是子空间集合学习?

子空间学习大意是指通过投影,实现高维特征向低维空间的映射,是一种经典的降维思想。 例如人脸图像,如果每幅图像提取出来的特征是1000维,则每幅图像对应着1000维空间中的一个点。维数太高给计算带来很...

人脸识别NPE及SNPE子空间方法

  • 2011年01月27日 22:22
  • 5KB
  • 下载

ICCV 2011

Code Title Type 3A Nonparametric Riemannian Framework on Tensor Field w...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:稀疏表示+子空间学习 (ICCV2011)
举报原因:
原因补充:

(最多只允许输入30个字)