关闭

IEEE tran bib参考文献的问题

IEEE trans 模板中bib文件的添加~ \begin{bibliographystyle}{IEEEtran} \begin{bibliography}{IEEEabrv,IEEEexample} \end{bibliography} \end{bibliographystyle} 其中IEEEexample.bib是自己写的参考文献的文件。。 原来用的是: ...
阅读(3460) 评论(0)

NCA: Neighbourhood Components Analysis

参考paper: 1、Neighbourhood Components Analysis:http://www.cs.toronto.edu/~hinton/absps/nca.pdf 2、Discriminant common vectors versus neighbourhood components analysis and Laplacianfaces: A comparat...
阅读(1494) 评论(1)

IEEE Trans template (Latex and word)

下载地址:http://www.ieee.org/publications_standards/publications/authors/author_templates.html...
阅读(3373) 评论(0)

Fisher Vector

From:  High-DimensionalSignature Compression for Large-Scale Image Classification Jorge S´anchez and Florent Perronnin...
阅读(6095) 评论(0)

matlab 计时函数

tic, toc 秒表计时, tic是开始, toc是结束...
阅读(559) 评论(0)

VLFeat

VLFeat做什么的?       The VLFeat library implements popular computer vision algorithms including HOG,SIFT, MSER, k-means, hierarchical k-means, agglomerative             information bottleneck, SLI...
阅读(3125) 评论(2)

matlab 三维曲线曲面 meshgrid and surf

x=0:0.1:2*pi; y=x; [X,Y]=meshgrid(x,y); Z=sin(X)+sin(Y); %3D spline plot3(X,Y,Z); %3D surface figure; surf(X,Y,Z)...
阅读(1644) 评论(0)

Linear and nonlinear least squares regeressions

From: a least squares regression framework on manifolds and its application to gesture recognition Yui Man Lui, Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA...
阅读(834) 评论(0)

Some Matrix manifolds (Lie group, Grassmann manifold and Riemannian manifold) for computer vision

Lie group  A Lie group is a set G with two structures: G is a group and G is a (smooth,  real) manifold. These structures agree in the following sense: multiplication and  inversion are smooth maps...
阅读(1177) 评论(0)

高阶SVD

...
阅读(962) 评论(0)

A general iterated shinkage algorithm for non-convex sparse coding.

A Generalized iterated shrinkage algorithm for non-convex sparse coding From zhanglei Sparse coding with non-convex Lp-norm minimization (0 better than  Sparse coding with convex L1 norm mimini...
阅读(949) 评论(0)

Graph embedding and extensions: a general framework for dimensionality reducation

Paper: Graph embedding and extensions: a general framework for dimensionality reducation From:Shuicheng Yan  N多方法来解决降维的方法:有监督和无监督的;统计的、几何理论的。。。 New 降维方法:Marginal Fisher Analysis (MFA)             ...
阅读(921) 评论(0)

Combining multiple manifold-valued descriptors for improved object recognitionwen

分析paper:Combining multiple manifold-valued descriptors for improved object recognition From Mehrtash harandi Classification using multiple manifold-valued features.  Riemannnian Geometry Combi...
阅读(649) 评论(0)
    个人资料
    • 访问:1776978次
    • 积分:19022
    • 等级:
    • 排名:第490名
    • 原创:285篇
    • 转载:157篇
    • 译文:19篇
    • 评论:257条
    最新评论