关闭

JobTracker和TaskTracker

标签: mapreduce
185人阅读 评论(0) 收藏 举报
分类:

一、概述

MapReduce采用Master/Slave结构。
*Master:整个集群的唯一的全局管理者,功能包括:作业管理、状态监控和任务调度等,即MapReduce中的JobTracker。
*Slave:负责任务的执行和任务状态的回报,即MapReduce中的TaskTracker。
JobTracker对应于NameNode,TaskTracker对应于DataNode。NameNode和DataNode是针对数据存放而言的,JobTracker和TaskTracker是针对于MapReduce执行而言的。
MapReduce中几个主要概念,MapReduce整体上可以分为这么几条执行线索:JobClient,JobTracker与TaskTracker。

  1. JobClient会在用户端通过JobClient类将应用已经配置参数打包成jar文件存储到hdfs,并把路径提交到JobTracker,然后由JobTracker 创建每一个Trask(即MapTask和ReduceTask)并将它们分发到各个TaskTracker服务中执行
  2. JobTracker是一个Master服务,服务启动之后JobTracker接收Job,负责调度Job的每一个TaskTracker上,并监控他们,如果发现有失败的task就重新运行它。一般情况应该把JobTracker部署在单独的机器上。
  3. TaskTracker是运行在多个节点上的Slaver服务。TaskTracker主动与JobTracker通信,接收作业,并负责直接执行每一个任务。
  4. TaskTracker都需要运行在HDFS的DataNode上。

二、JobTracker剖析

(1)概述:JobTracker是一个后台服务进程,启动之后,会一直监听并接受来自各个TaskTracker发送的心跳信息,包括资源使用情况和任务运行情况等信息

(2)JobTracker的主要功能:

  1. 作业控制:在hadoop中每个应用程序被表示成一个作业,每个作业又被分成多个任务,JobTracker的作业控制模块则负责作业的分解和状态监控

    *最重要的是状态监控:主要包括TaskTracker状态监控、作业状态监控和任务状态监控。主要作用:容错和胃任务调度提供决策依据

  2. 资源管理

三、TaskTracker 剖析

(1)TaskTracker概述:TaskTracker是JobTracker和Task之间的桥梁:一方面,从JobTracker接收并执行各种命令:运行任务、提交任务、杀死任务等;另一方面,将本地节点上各个任务的状态通过心跳周期性汇报给JobTracker。TaskTracker与JobTracker和Task之间采用了RPC协议进行通信。
(2)TaskTracker的功能:

  1. 汇报心跳:Tracker周期性将所有节点上各种信息通过心跳机制汇报给JobTracker。这些信息包括两部分:
    *机器级别信息:节点健康情况、资源使用情况等。
    *任务级别信息:任务执行进度、任务运行状态等。

  2. 执行命令:JobTracker会给TaskTracker下达各种命令,主要包括:启动任务、提交任务、杀死任务、杀死作业和重新初始化

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:229次
    • 积分:6
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:2篇
    • 译文:0篇
    • 评论:0条
    文章分类
    文章存档