Caffe源码解析6:Neuron_Layer

转载 2017年01月03日 19:32:08

转载自:http://home.cnblogs.com/louyihang-loves-baiyan/

NeuronLayer,顾名思义这里就是指神经元激活函数的相应层。我们知道在blob进入激活函数之前和之后他的size是不会变的,而且激活值也就是输出 \(y\) 只依赖于相应的输入 \(x\)。在Caffe里面所有的layer的实现都放在src文件夹下的layer文件夹中,基本上很多文章里应用到的layer类型它都有cpu和cuda的实现。
在caffe里面NeuronLayer比较多,在此罗列了一下

  • AbsValLayer
  • BNLLLayer
  • DropoutLayer
  • ExpLayer
  • LogLayer
  • PowerLayer
  • ReLULayer
  • CuDNNReLULayer
  • SigmoidLayer
  • CuDNNSigmoidLayer
  • TanHLayer
  • CuDNNTanHLayer
  • ThresholdLayer
  • PReLULayer

Caffe里面的Neuron种类比较多方便人们使用,这里我们着重关注几个主要的Neuro_layer

ReLULayer

目前在激活层的函数中使用ReLU是非常普遍的,一般我们在看资料或者讲义中总是提到的是Sigmoid函数,它比Sigmoid有更快的收敛性,因为sigmoid在收敛的时候越靠近目标点收敛的速度会越慢,也是其函数的曲线形状决定的。而ReLULayer则相对收敛更快,具体可以看Krizhevsky 12年的那篇ImageNet CNN文章有更详细的介绍。
其计算的公式是:
\[y = \max(0, x)\]
如果有负斜率式子变为:
\[ y = \max(0, x) + \nu \min(0, x)\]
反向传播的公式
\[ \frac{\partial E}{\partial x} = \left\{ \begin{array}{lr} \nu \frac{\partial E}{\partial y} & \mathrm{if} \; x \le 0 \\ \frac{\partial E}{\partial y} & \mathrm{if} \; x > 0 \end{array} \right. \]
其在cafffe中的forward和backward函数为

template <typename Dtype>
void ReLULayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  const int count = bottom[0]->count();
  Dtype negative_slope = this->layer_param_.relu_param().negative_slope();
  for (int i = 0; i < count; ++i) {
    top_data[i] = std::max(bottom_data[i], Dtype(0))
        + negative_slope * std::min(bottom_data[i], Dtype(0));
  }
}

template <typename Dtype>
void ReLULayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* bottom_data = bottom[0]->cpu_data();
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    const int count = bottom[0]->count();
    Dtype negative_slope = this->layer_param_.relu_param().negative_slope();
    for (int i = 0; i < count; ++i) {
      bottom_diff[i] = top_diff[i] * ((bottom_data[i] > 0)
          + negative_slope * (bottom_data[i] <= 0));
    }
  }
}
SigmoidLayer

Sigmoid函数,也称为阶跃函数,函数曲线是一个优美的S形。目前使用Sigmoid函数已经不多了,大多使用ReLU来代替,其对应的激活函数为:
\[y = (1 + \exp(-x))^{-1}\]
其反向传播时
\[\frac{\partial E}{\partial x} = \frac{\partial E}{\partial y} y (1 - y)\]
其相应的forward和backward的函数为

template <typename Dtype>
void SigmoidLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  const int count = bottom[0]->count();
  for (int i = 0; i < count; ++i) {
    top_data[i] = sigmoid(bottom_data[i]);
  }
}

template <typename Dtype>
void SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* top_data = top[0]->cpu_data();
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    const int count = bottom[0]->count();
    for (int i = 0; i < count; ++i) {
      const Dtype sigmoid_x = top_data[i];
      bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x);
    }
  }
}
DropoutLayer

DropoutLayer现在是非常常用的一种网络层,只用在训练阶段,一般用在网络的全连接层中,可以减少网络的过拟合问题。其思想是在训练过程中随机的将一部分输入x之置为0。
\[y_{\mbox{train}} = \left\{ \begin{array}{ll} \frac{x}{1 - p} & \mbox{if } u > p \\ 0 & \mbox{otherwise} \end{array} \right. \]
其forward_cpu和backward_cpu为:

template <typename Dtype>
void DropoutLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
    const vector<Blob<Dtype>*>& top) {
  const Dtype* bottom_data = bottom[0]->cpu_data();
  Dtype* top_data = top[0]->mutable_cpu_data();
  unsigned int* mask = rand_vec_.mutable_cpu_data();
  const int count = bottom[0]->count();
  if (this->phase_ == TRAIN) {
    // Create random numbers构造随机数,这里是通过向量掩码来和bottom的数据相乘,scale_是控制undropped的比例
    caffe_rng_bernoulli(count, 1. - threshold_, mask);
    for (int i = 0; i < count; ++i) {
      top_data[i] = bottom_data[i] * mask[i] * scale_;
    }
  } else {
    caffe_copy(bottom[0]->count(), bottom_data, top_data);
  }
}

template <typename Dtype>
void DropoutLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
    const vector<bool>& propagate_down,
    const vector<Blob<Dtype>*>& bottom) {
  if (propagate_down[0]) {
    const Dtype* top_diff = top[0]->cpu_diff();
    Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
    if (this->phase_ == TRAIN) {
      const unsigned int* mask = rand_vec_.cpu_data();
      const int count = bottom[0]->count();
      for (int i = 0; i < count; ++i) {
        bottom_diff[i] = top_diff[i] * mask[i] * scale_;
      }
    } else {
      caffe_copy(top[0]->count(), top_diff, bottom_diff);
    }
  }
}

相关文章推荐

Caffe源码解析5:Conv_Layer

转载自:http://home.cnblogs.com/louyihang-loves-baiyan/ 这里主要讨论一下ConvolutionLayer相关的Layer: BaseConvo...

Caffe源码解析2:SyncedMem

参考自:http://home.cnblogs.com/louyihang-loves-baiyan/ 根据前面一章对Blob的分析,我们看到blob.hpp中封装了#include "caffe/...

Caffe源码解析4: Data_layer

转载自:http://home.cnblogs.com/louyihang-loves-baiyan/ data_layer应该是网络的最底层,主要是将数据送给blob进入到net中,在data_l...

Caffe源码解析3:Layer

转载自:http://home.cnblogs.com/louyihang-loves-baiyan/ layer这个类可以说是里面的一个基本类了,深度网络呢就是一层一层的layer,相互之间通过b...

Caffe源码解析1:Blob

转载自:http://home.cnblogs.com/louyihang-loves-baiyan/ Caffe的万丈高楼(Net)是按照我们设计的图纸(prototxt)、用Blob这些砖块筑成...

Caffe源码解析7:Pooling_Layer

转载自:http://home.cnblogs.com/louyihang-loves-baiyan/ Pooling 层一般在网络中是跟在Conv卷积层之后,做采样操作,其实是为了进一步缩小fea...

Caffe源码解析8: Net

Net在Caffe中代表一个完整的CNN模型,它包含若干个Layer实例。前面看到的各类prototxt的经典网络结构如LeNet、AlexNet等都是Caffe代码实现的一个Net对象。 1、Ne...

caffe源码阅读7-neuron_layers.hpp+各cpp

neuron_layers.hpp: NeuronLayer类 AbsValLayer类 BNLLLayer类 DropoutLayer类 PowerLayer类 ReLULayer类,CuDNNR...

caffe源码简单解析——Layer层

原文来自:http://www.shwley.com/index.php/archives/68/  前言 老实说,caffe中的layer层代码比较多,各种抽象看起来比较绕。官方...

Caffe源码解析7:Pooling_Layer

Pooling 层一般在网络中是跟在Conv卷积层之后,做采样操作,其实是为了进一步缩小feature map,同时也能增大神经元的视野。在Caffe中,pooling层属于vision_layer的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)