用户画像的技术选型与架构实现

转载 2016年08月28日 15:31:20

这里讲解下用户画像的技术架构和整体实现,那么就从数据整理、数据平台、面向应用三个方面来讨论一个架构的实现(个人见解)。

数据整理:

1、数据指标的的梳理来源于各个系统日常积累的日志记录系统,通过sqoop导入hdfs,也可以用代码来实现,比如spark的jdbc连接传统数据库进行数据的cache。还有一种方式,可以通过将数据写入本地文件,然后通过sparksql的load或者hive的export等方式导入HDFS。

2、通过hive编写UDF 或者hiveql 根据业务逻辑拼接ETL,使用户对应上不同的用户标签数据(这里的指标可以理解为为每个用户打上了相应的标签),生成相应的源表数据,以便于后续用户画像系统,通过不同的规则进行标签宽表的生成。

数据平台

1、数据平台应用的分布式文件系统为Hadoop的HDFS,因为Hadoop2.0以后,任何的大数据应用都可以通过ResoureManager申请资源,注册服务。比如(sparksubmit、hive)等等。而基于内存的计算框架的出现,就并不选用hadoop的MapReduce了。当然很多离线处理的业务,很多人还是倾向于使用Hadoop,但是hadoop的封装的函数只有map和Reduce太过单一,而不像spark一类的计算框架有更多封装的函数(可参考博客spark专栏)。可以大大提升开发效率。

2、计算的框架选用Spark以及RHadoop,这里Spark的主要用途有两种,一种是对于数据处理与上层应用所指定的规则的数据筛选过滤,(通过Scala编写spark代码提交至sparksubmit)。一种是服务于上层应用的SparkSQL(通过启动spark thriftserver与前台应用进行连接)。 RHadoop的应用主要在于对于标签数据的打分,比如利用协同过滤算法等各种推荐算法对数据进行各方面评分。

3、MongoDB内存数据的应用主要在于对于单个用户的实时的查询,也是通过对spark数据梳理后的标签宽表进行数据格式转换(json格式)导入mongodb,前台应用可通过连接mongodb进行数据转换,从而进行单个标签的展现。(当然也可将数据转换为Redis中的key value形式,导入Redis集群)

4、mysql的作用在于针对上层应用标签规则的存储,以及页面信息的展现。后台的数据宽表是与spark相关联,通过连接mysql随后cache元数据进行filter,select,map,reduce等对元数据信息的整理,再与真实存在于Hdfs的数据进行处理。

面向应用

1、从刚才的数据整理、数据平台的计算,都已经将服务于上层应用的标签大宽表生成。(用户所对应的各类标签信息)。那么前台根据业务逻辑,勾选不同的标签进行求和、剔除等操作,比如本月流量大于200M用户(标签)+本月消费超过100元用户(标签)进行和的操作,通过前台代码实现sql的拼接,进行客户数目的探索。这里就是通过jdbc的方式连接spark的thriftserver,通过集群进行HDFS上的大宽表的运算求count。(这里要注意一点,很多sql聚合函数以及多表关联join 相当于hadoop的mapreduce的shuffle,很容易造成内存溢出,相关参数调整可参考本博客spark栏目中的配置信息) 这样便可以定位相应的客户数量,从而进行客户群、标签的分析,产品的策略匹配从而精准营销。

转自:http://www.cnblogs.com/yangsy0915/p/5222705.html

相关文章推荐

用户画像系统设计调研

用户画像系统设计调研 一 目的 该系统是对用户数据整体上的统计与展示,统计用户的性别、年龄、地域分布、浏览兴趣分布、忠诚度分布、综合价值分布、用户流失率等数据。该模块的主要用户是内部运营人员、产品...

用户画像构建策略及应用实践

Qunar用户画像构建策略及应用实践 2016-11-15 李国芳 大数据杂谈 1用户画像的构建原则 我们做用户画像的目的有两个: 必须从业务场景出发,解决实际的业务问题,之...

一步一步认识用户画像

一步一步认识用户画像标签: 用户画像 GBDT 建模 Python作为一名资深吃瓜群众,身处大数据时代,过去一直不知道用户画像的存在。用户画像到底是何来头,下面会一一告诉你~...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

如何实现基于内容和用户画像的个性化推荐

个性化推荐系统是一门由数据挖掘和机器学习综合的学科,它必须能够基于用户之前的口味和喜好提供相关的精确的推荐,而且这种口味和喜欢的收集必须尽量少的需要用户的劳动。本文主要介绍了如何基于内容和用呢画像实现...

用户画像的方法与案例——从具象到抽象

摘要:用户画像,可以简单,也可以复杂,本文试图用通俗的文字将专业的用户画像方法进行简单的表达,让没做过用户分析的同学也能看的明白用户画像究竟是什么,在产品侧如何应用。   三年前,还在腾讯...
  • zyj8170
  • zyj8170
  • 2015年10月23日 11:07
  • 5372

用户画像--用户标签

1、长期、短期 2、静态标签、动态标签 3、第一方标签、第三方标签

用户画像解析

什么是用户画像? 在互联网逐渐步入大数据时代后,不可避免的给企业及消费者行为带来一系列改变与重塑。其中最大的变化莫过于,消费者的一切行为在企业面前似乎都将是“可视化”的。随着大数据技术的深入研究...

电商用户画像

一、什么是用户画像      用户画像也叫用户信息标签化,从电商的角度看,根据用户在电商网站上所填的信息和欣慰,用一些标签把用户描述出来,每个用户都有一些基本属性,例如用户年龄、教育程度、兴趣还好。...

用户画像数据建模方法

从1991年Tim Berners-Lee发明了万维网(World Wide Web)开始,到20年后2011年,互联网真正走向了一个新的里程碑,进入了“大数据时代”。经历了12、13两年热炒之后,人...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:用户画像的技术选型与架构实现
举报原因:
原因补充:

(最多只允许输入30个字)