二叉查找树(BST)和平衡二叉查找树(AVL)

转载 2016年05月31日 11:30:07

二叉查找树(BST)

前一篇介绍了树,却未介绍树有什么用。但就算我不说,你也能想得到,看我们Windows的目录结构,其实就是树形的,一个典型的分类应用。当然除了分类,树还有别的作用,我们可以利用树建立一个非常便于查找取值又非常便于插入删除的数据结构,这就是马上要提到的二叉查找树(Binary Search Tree),这种二叉树有个特点:对任意节点而言,左子(当然了,存在的话)的值总是小于本身,而右子(存在的话)的值总是大于本身。

这种特性使得我们要查找其中的某个值都很容易,从根开始,小的往左找,大的往右找,不大不小的就是这个节点了;插入一样的道理,从根开始,小的往左,大的往右,直到叶子,就插入,算法比较简单,不一一列了,它们的时间复杂度期望为Ο(logn)。(为什么是“期望”,后面会讲)

删除则稍微麻烦点,因为我们删的不一定是叶子,如果只是叶子,那就好办,如果不是呢?我们最通常的做法就是把这个节点往下挪,直到它变为叶子为止,看图。


也许你要问,如果和左子树最大节点交换后,要删除的节点依然不是叶子,那怎么办呢?那继续呗,看图:

那左子树不存在的情况下呢?你可以查找右子树的最小节点,和上面是类似的,图我就不画了。

平衡二叉查找树(AVL)

前面说了,二叉查找树方便查找取值插入删除,其复杂度不过为Ο(logn),但这是个“期望值”,因为我们也有比较差的情况,比如下面这棵树:

说是树,其实已经退化为链表了,但从概念上来说它依然是一棵二叉查找树,这棵树怎么形成的呢?很简单,我们只要按着1,2,3,4,5,6,7这样的顺序往一个空的二叉查找树里添加元素,就形成了。这样我们再添加8,9,10……那真的就变成了一个链表结构,那插入的复杂度也就变成了Ο(n)。导致这种糟糕的原因是这棵树非常不平衡,右树的重量远大于左树,所以我们提出了一种叫“平衡二叉查找树”的结构,平衡二叉查找树英文叫AVL,而不是我本来以为的什么Balance BST,AVL来自于人名,我这里就不追究了。

平衡,顾名思义,就是两边看起来比较对称,但很多时候我们是做不到绝对的对称(绝对对称即对任意子树而言,左右节点的数量都相等),因为只有(2^n-1)元素数目的二叉树才能做到绝对对称,所以我们使用了“高度”(height)这么个概念,某节点的高度指的是它离它的子树的叶子的最远距离:


那么我再引申出两个概念,左高和右高:
左高 = 左节点空 ? 0 : (左节点高+1)
右高 = 右节点空 ? 0 : (右节点高+1)

那我们就可以给AVL下个定义了,对AVL的任意节点而言:

ABS(左高 - 右高) <= 1

做到了这点,这棵树看起来就比较平衡了,如何生成一棵AVL树呢?算法十分不简单,那我们先通过图来获得一些最直观的认识,就先按1,2,3,4……这样的自然数顺序加入到树中,下图体现出了树的构造变化:

随着新节点的加入,树自动调整自身结构,达到新的平衡状态,这就是我们想要的AVL树。我们先要分析,为什么树会失衡?是由于插入了一个元素,对吧,那我们能不能把不同的插入情况全部概括起来并作出统一的调整来使得树重新平衡?答案是肯定的,也有人帮我们研究好了,只是证明这个过程需要一些数学功底,我是不行的了,所以直接给出算法示意图和范例。

LL型调整:


再给一个LL型调整的实例:

RR型调整,其实就是LL型调整的镜像而已:


这是一个RR型调整的实例:

接下去就是LR型调整:

这是一个LR型调整的实例:

RL型调整是LR型调整的镜像,所以不再画图了。

至于如何选择不同的调整类型,我后面将给出代码,看“DoBalance”这个函数的实现,很清晰的。那接下去我们还要面临一个比较困难的问题,就是删除及删除平衡,因为不光是插入元素可能导致不平衡,删除也会。不过我们都有个同样的前提,就是无论是插入前还是删除前的二叉树,都是平衡的。

我参考的书上说删除和插入其实是很类似的,具体实现却没说,我后来写代码蛮辛苦的,最后发现确实差别不大,但在调整相关节点高度的时候确实有点细微上的差别,这个在我的代码里也能看得出来。下面我就给出我的代码,我已经通过了初步的测试,不过也许代码还有bug,如果发现了,请留言。

代码比较长,其中还利用了之前的堆栈和队列结构,可以算是复习,如果觉得代码晦涩难懂,也可以跳过,有些怕自己的代码写得不够好……

另附带一些代码说明:
1,TreeNode目前只带一个“数据”,就是iData,所以交换节点位置时候,为了方便,只需要交换这个数据;
2,代码中的pMinBST指向的是“最小不平衡树”,即:从插入或删除的位置开始往上查找出现的第一个不平衡的节点;
3,“往上查找”就需要借助一个Stack结构;
4,AVL树的析构采用了后序遍历,由于是析构,之后不再用到,所以后序遍历时候改变了节点指针的值,后续遍历使用了Queue结构;
5,删除节点时候,寻找并交换叶子节点的操作有些晦涩,往左寻找最大节点,为什么找到了最大并交换,而它还不是叶子的时候,我只需要再往左找并交换一次就可以了呢?因为我删除到时候有个前提:这棵树是平衡的,往右寻找最小节点的道理跟这个一样的;
6,有什么问题请留言。

#include "stdio.h"

// TreeNode
//////////////////////////////////////////////////////////////////////////
struct TreeNode
{
    TreeNode(
int iVal);
    
int UpdateHeight();
    
int GetLeftHeight();
    
int GetRightHeight();
    
int GetDiff(); //Left Height - Right height

    
int iData;

    
int iHeight;
    TreeNode
* pLeft;
    TreeNode
* pRight;
};

TreeNode::TreeNode(
int iVal)
{
    iData 
= iVal;
    iHeight 
= 0;
    pLeft 
= 0;
    pRight 
= 0;
}

int TreeNode::UpdateHeight()
{
    
int iHeightLeft = GetLeftHeight();
    
int iHeightRight = GetRightHeight();
    
if(iHeightLeft==0 && iHeightRight==0)
        iHeight 
= 0;
    
else
        iHeight 
= (iHeightLeft>iHeightRight)?(iHeightLeft):(iHeightRight);
    
return iHeight;
}

int TreeNode::GetLeftHeight()
{
    
if(pLeft!=0)
        
return pLeft->iHeight + 1;
    
else
        
return 0;
}

int TreeNode::GetRightHeight()
{
    
if(pRight!=0)
        
return pRight->iHeight + 1;
    
else
        
return 0;
}

int TreeNode::GetDiff()
{
    
int iHeightLeft = 0;
    
int iHeightRight = 0;
    
    
if(pLeft!=0)
        iHeightLeft 
= pLeft->iHeight + 1;
    
if(pRight!=0)
        iHeightRight 
= pRight->iHeight + 1;

    
return iHeightLeft - iHeightRight;
}

// Stack
//////////////////////////////////////////////////////////////////////////
class Stack
{
public:
    Stack(
int iAmount = 10);
    
~Stack();
    
    
//return 1 means succeeded, 0 means failed.
    int Pop(TreeNode* & val);
    
int Push(TreeNode* val);
    
int Top(TreeNode* & val);

    
//iterator
    int GetTop(TreeNode* &val);
    
int GetNext(TreeNode* &val);
private:
    TreeNode
** m_pData;
    
int m_iCount;
    
int m_iAmount;

    
//iterator
    int m_iCurr;
};

Stack::Stack(
int iAmount)
{
    m_pData 
= new TreeNode*[iAmount];
    m_iCount 
= 0;
    m_iAmount 
= iAmount;
    m_iCurr 
= 0;
}

Stack::
~Stack()
{
    delete m_pData;
}

int Stack::Pop(TreeNode* & val)
{
    
if(m_iCount>0)
    {
        
--m_iCount;
        val 
= m_pData[m_iCount];
        
return 1;
    }
    
return 0;
}

int Stack::Push(TreeNode* val)
{
    
if(m_iCount<m_iAmount)
    {
        m_pData[m_iCount] 
= val;
        
++m_iCount;
        
return 1;
    }
    
return 0;
}

int Stack::Top(TreeNode* & val)
{
    
if(m_iCount>0 && m_iCount<=m_iAmount)
    {
        val 
= m_pData[m_iCount-1];
        
return 1;
    }
    
return 0;
}

int Stack::GetTop(TreeNode* &val)
{
    
if(m_iCount>0 && m_iCount<=m_iAmount)
    {
        val 
= m_pData[m_iCount-1];
        m_iCurr 
= m_iCount - 1;
        
return 1;
    }
    
return 0;
}

int Stack::GetNext(TreeNode* &val)
{
    
if((m_iCurr-1)<(m_iCount-1&& (m_iCurr-1)>=0)
    {
        
--m_iCurr;
        val 
= m_pData[m_iCurr];
        
return 1;
    }
    
return 0;
}

// The Queue
//////////////////////////////////////////////////////////////////////////
class Queue
{
public:
    Queue(
int iAmount=10);
    
~Queue();
    
    
//return 0 means failed, return 1 means succeeded.
    int Enqueue(TreeNode* node);
    
int Dequeue(TreeNode* & node);
private:
    
int m_iAmount;
    
int m_iCount;
    TreeNode
** m_ppFixed; //The pointer array to implement the queue.
    
    
int m_iHead;
    
int m_iTail;
};

Queue::Queue(
int iAmount)
{
    m_iCount 
= 0;
    m_iAmount 
= iAmount;
    m_ppFixed 
= new TreeNode*[iAmount];
    
    m_iHead 
= 0;
    m_iTail 
= iAmount-1;
}

Queue::
~Queue()
{
    delete[] m_ppFixed;
}

int Queue::Enqueue(TreeNode* node)
{
    
if(m_iCount<m_iAmount)
    {
        
++m_iTail;
        
if(m_iTail > m_iAmount-1)
            m_iTail 
= 0;
        m_ppFixed[m_iTail] 
= node;
        
++m_iCount;
        
return 1;
    }
    
else
        
return 0;
}

int Queue::Dequeue(TreeNode* & node)
{
    
if(m_iCount>0)
    {
        node 
= m_ppFixed[m_iHead];
        
++m_iHead;
        
if(m_iHead > m_iAmount-1)
            m_iHead 
= 0;
        
--m_iCount;
        
return 1;
    }
    
else
        
return 0;
}

// AVLTree
//////////////////////////////////////////////////////////////////////////
class CAVLTree
{
public:
    CAVLTree();
    
~CAVLTree();
    
    TreeNode
* Insert(int iVal);
    
int Delete(int iVal);
    TreeNode
* FindNode(int iVal); //the find function, returns 0 means not found.
    
#ifdef _DEBUG
    
void PrintTree();
#endif

protected:
    
//Update the height after insert or delete.
    
//And find the minimum unbalance BST.
    int UpdateHeight(Stack &st, TreeNode* &pMinBST, TreeNode* &pMinBSTParent, int& iLeftRight);

    
//Rotate
    void DoBalance(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight);
    
void LLRotate(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight);
    
void RRRotate(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight);
    
void LRRotate(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight, int iSpecialFlag=0);
    
void RLRotate(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight, int iSpecialFlag=0);
    
    
void SwapTwoNodes(TreeNode *pNode1, TreeNode *pNode2); //Swap their value only.

    TreeNode 
*m_pRoot;
};

CAVLTree::CAVLTree()
{
    m_pRoot 
= NULL;
}

CAVLTree::
~CAVLTree()
{
    Stack st(
40); //2^40 must be enough.

    
//Postorder traverse the tree to release all nodes.
    TreeNode *pNode = m_pRoot;
    TreeNode 
*pTemp;
    
if(pNode==0)
        
return;

    
while (1)
    {
        
if(pNode->pLeft!=0)
        {
            st.Push(pNode);
            pTemp 
= pNode;
            pNode 
= pNode->pLeft;
            pTemp
->pLeft = 0;
            
continue;
        }
        
        
if(pNode->pRight!=0)
        {
            st.Push(pNode);
            pTemp 
= pNode;
            pNode 
= pNode->pRight;
            pTemp
->pRight = 0;
            
continue;
        }
        
        delete pNode;

        
if(0==st.Pop(pNode))
            
break;
    }
}

TreeNode
* CAVLTree::Insert(int iVal)
{
    Stack st(
40); //To record the path.
    TreeNode *pNode = m_pRoot;
    TreeNode 
*pIns;
    
int iLeftOrRight; // 0 means left, 1 means right.
    while (1)
    {
        
if(pNode==0//Insert at this position
        {
            TreeNode 
*pNew = new TreeNode(iVal);
            TreeNode 
*pPrev;
            
if(0!=st.Top(pPrev))
            {
                
if(0==iLeftOrRight)
                    pPrev
->pLeft = pNew;
                
else
                    pPrev
->pRight = pNew;
            }
            
else //The root
            {
                m_pRoot 
= pNew;
                
return m_pRoot;
            }

            pIns 
= pNew;
            
if(0==iLeftOrRight && pPrev->pRight!=0 || 1==iLeftOrRight && pPrev->pLeft!=0//Need not to change.
                return pIns;

            
break;
        }

        
if(iVal<pNode->iData)
        {
            st.Push(pNode);
            pNode 
= pNode->pLeft;
            iLeftOrRight 
= 0;
        }
        
else if(iVal>pNode->iData)
        {
            st.Push(pNode);
            pNode 
= pNode->pRight;
            iLeftOrRight 
= 1;
        }
        
else
            
return pNode;
    }

    TreeNode
* pMinBST;
    TreeNode
* pMinBSTParent;
    
int iLRParent;
    UpdateHeight(st, pMinBST, pMinBSTParent, iLRParent);
    
if(pMinBST!=0//It exists. need balance.
    {
        DoBalance(pMinBST, pMinBSTParent, iLRParent);
    }
    
return pIns;
}

//Update the height after insert or delete.
int CAVLTree::UpdateHeight(Stack &st, TreeNode* &pMinBST, TreeNode* &pMinBSTParent, int& iLRParent)
{
    TreeNode 
*pNode;
    pMinBST 
= 0;
    pMinBSTParent 
= 0;

    
if(0==st.GetTop(pNode))
        
return 0;
    
    
while(1)
    {
        pNode
->UpdateHeight();
        
int iDiff = pNode->GetDiff();
        
if(iDiff>1 || iDiff<-1//unbalance
        {
            pMinBST 
= pNode;
            
if(0!=st.GetNext(pMinBSTParent))
            {
                
if(pMinBSTParent->pLeft==pMinBST)
                    iLRParent 
= 0//left
                else
                    iLRParent 
= 1//right
            }
            
return 0;
        }

        
if(0==st.GetNext(pNode))
            
break;
    }

    
return 0;
}

void CAVLTree::DoBalance(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight)
{
    
if(pNode->GetLeftHeight() < pNode->GetRightHeight())
    {
        
if(pNode->pRight->GetLeftHeight() < pNode->pRight->GetRightHeight())
            RRRotate(pNode, pMinBSTParent, iLeftRight);
        
else if(pNode->pRight->GetLeftHeight() > pNode->pRight->GetRightHeight())
            RLRotate(pNode, pMinBSTParent, iLeftRight);
        
else
            RLRotate(pNode, pMinBSTParent, iLeftRight, 
1);
    }
    
else
    {
        
if(pNode->pLeft->GetLeftHeight() > pNode->pLeft->GetRightHeight())
            LLRotate(pNode, pMinBSTParent, iLeftRight);
        
else if(pNode->pLeft->GetLeftHeight() < pNode->pLeft->GetRightHeight())
            LRRotate(pNode, pMinBSTParent, iLeftRight);
        
else
            LRRotate(pNode, pMinBSTParent, iLeftRight, 
1);
    }
}

//      B               A
//     / \             / \
//    A   BR    =>    AL  B
//   / \              +  / \
//  AL  AR              AR  BR
//  +
void CAVLTree::LLRotate(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight)
{
    
//B, A and AL must be exist. BR and AR may be null.
    TreeNode *pNodeB = pNode;
    TreeNode 
*pNodeA = pNodeB->pLeft;
    TreeNode 
*pNodeAR = pNodeA->pRight;
    pNodeA
->pRight = pNodeB;
    pNodeB
->pLeft = pNodeAR;

    
//Handle the height
    pNodeB->iHeight -= 2;

    
if(pMinBSTParent==0//root
        m_pRoot = pNodeA;
    
else
    {
        
if(iLeftRight==0//left
            pMinBSTParent->pLeft = pNodeA;
        
else
            pMinBSTParent
->pRight = pNodeA;
    }
}

//      A                B
//     / \              / \
//    AL  B      =>    A   BR
//       / \          / \  +
//      BL  BR       AL  BL
//          +
void CAVLTree::RRRotate(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight)
{
    TreeNode 
*pNodeA = pNode;
    TreeNode 
*pNodeB = pNodeA->pRight;
    TreeNode 
*pNodeBL = pNodeB->pLeft;
    pNodeB
->pLeft = pNodeA;
    pNodeA
->pRight = pNodeBL;

    
//Handle the height
    pNodeA->iHeight -= 2;

    
if(pMinBSTParent==0//root
        m_pRoot = pNodeB;
    
else
    {
        
if(iLeftRight==0//left
            pMinBSTParent->pLeft = pNodeB;
        
else
            pMinBSTParent
->pRight = pNodeB;
    }
}

//          C                   B
//         / \                /   \
//        A   CR             A     C
//       / \         =>     / \   / \
//      AL  B              AL BL BR CR
//         / \                   +
//        BL  BR
//            +
// Special flag is used for some kind of delete operation, for example:
//        4                   3
//       / \                 / \
//      2   5(-)    =>      2   4
//     / \                 /
//    1   3               1
void CAVLTree::LRRotate(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight, int iSpecialFlag)
{
    TreeNode 
*pNodeC = pNode;
    TreeNode 
*pNodeA = pNodeC->pLeft;
    TreeNode 
*pNodeB = pNodeA->pRight;
    TreeNode 
*pNodeBL = pNodeB->pLeft;
    TreeNode 
*pNodeBR = pNodeB->pRight;
    pNodeB
->pLeft = pNodeA;
    pNodeB
->pRight = pNodeC;
    pNodeA
->pRight = pNodeBL;
    pNodeC
->pLeft = pNodeBR;

    
//Handle the height
    if(iSpecialFlag==0)
    {
        pNodeA
->iHeight -= 1;
        pNodeB
->iHeight += 1;
    }
    
else
    {
        pNodeB
->iHeight += 2;
    }
    pNodeC
->iHeight -= 2;

    
if(pMinBSTParent==0//root
        m_pRoot = pNodeB;
    
else
    {
        
if(iLeftRight==0//left
            pMinBSTParent->pLeft = pNodeB;
        
else
            pMinBSTParent
->pRight = pNodeB;
    }
}

//          B                   A
//         / \                /   \
//        BL  C              B     C
//           / \      =>    / \   / \
//          A   CR         BL AL AR CR
//         / \                   +
//        AL  AR
//            +
// Special flag is used for some kind of delete operation, for example:
//        3                   4
//       / \                 / \
//   (-)2   5      =>       3   5
//         / \                   \
//        4   6                   6
void CAVLTree::RLRotate(TreeNode *pNode, TreeNode* pMinBSTParent, int iLeftRight, int iSpecialFlag)
{
    TreeNode 
*pNodeB = pNode;
    TreeNode 
*pNodeC = pNodeB->pRight;
    TreeNode 
*pNodeA = pNodeC->pLeft;
    TreeNode 
*pNodeAL = pNodeA->pLeft;
    TreeNode 
*pNodeAR = pNodeA->pRight;
    pNodeA
->pLeft = pNodeB;
    pNodeA
->pRight = pNodeC;
    pNodeC
->pLeft = pNodeAR;
    pNodeB
->pRight = pNodeAL;

    
//Handle the height
    if(iSpecialFlag==0)
    {
        pNodeC
->iHeight -= 1;
        pNodeA
->iHeight += 1;
    }
    
else
    {
        pNodeA
->iHeight += 2;
    }
    pNodeB
->iHeight -= 2;
    
    
if(pMinBSTParent==0//root
        m_pRoot = pNodeA;
    
else
    {
        
if(iLeftRight==0//left
            pMinBSTParent->pLeft = pNodeA;
        
else
            pMinBSTParent
->pRight = pNodeA;
    }
}

int CAVLTree::Delete(int iVal)
{
    
if(m_pRoot==0)
        
return 0;

    Stack st(
40); //To record the path.
    TreeNode *pNode = m_pRoot;
    TreeNode 
*pPrev;
    
int iLeftOrRight; // 0 means left, 1 means right.

    
while (1)
    {
        
if(pNode->iData==iVal) //Yes, it is.
        {
            st.Push(pNode);
            
break;
        }

        
if(iVal<pNode->iData)
        {
            st.Push(pNode);
            
if(pNode->pLeft!=0)
                pNode 
= pNode->pLeft;
            
else
                
return 0;
            iLeftOrRight 
= 0;
        }
        
else //iVal > pNode->iData
        {
            st.Push(pNode);
            
if(pNode->pRight!=0)
                pNode 
= pNode->pRight;
            
else
                
return 0;
            iLeftOrRight 
= 1;
        }
    }
    
    
int iLeafLeftRight;

    
if(pNode->iHeight==0//It is the leaf node.
    {
        
if(0!=st.GetTop(pPrev))
        {
            iLeafLeftRight 
= iLeftOrRight;
        }
        
else //The root, this tree is going to be null.
        {
            delete m_pRoot;
            m_pRoot 
= 0;
            
return 0;
        }
    }
    
else if(pNode->pLeft!=NULL)
    {
        iLeafLeftRight 
= 0;
        
//Move this node to the bottom.
        TreeNode *pBiggestLeft = pNode->pLeft;
        st.Push(pBiggestLeft);
        
while(pBiggestLeft->pRight!=NULL)
        {
            pBiggestLeft 
= pBiggestLeft->pRight;
            st.Push(pBiggestLeft);
            iLeafLeftRight 
= 1;
        }
        SwapTwoNodes(pBiggestLeft, pNode);
        
if(pBiggestLeft->pLeft!=NULL)
        {
            SwapTwoNodes(pBiggestLeft, pBiggestLeft
->pLeft);
            st.Push(pBiggestLeft
->pLeft);
            iLeafLeftRight 
= 0;
        }
    }
    
else //pNode->pRight!=NULL
    {
        iLeafLeftRight 
= 1;
        
//Move this node to the bottom.
        TreeNode *pLeastRight = pNode->pRight;
        st.Push(pLeastRight);
        
while(pLeastRight->pLeft!=NULL)
        {
            pLeastRight 
= pLeastRight->pLeft;
            st.Push(pLeastRight);
            iLeafLeftRight 
= 0;
        }
        SwapTwoNodes(pLeastRight, pNode);
        
if(pLeastRight->pRight!=NULL)
        {
            SwapTwoNodes(pLeastRight, pLeastRight
->pRight);
            st.Push(pLeastRight
->pRight);
            iLeafLeftRight 
= 1;
        }
    }

    
//Delete the leaf.
    TreeNode *pToDel;
    st.Pop(pToDel);
    delete pToDel;
    TreeNode 
*pToChange;
    st.GetTop(pToChange);
    
if(iLeafLeftRight==0)
        pToChange
->pLeft = 0;
    
else
        pToChange
->pRight = 0;

    TreeNode
* pMinBST;
    TreeNode
* pMinBSTParent;
    
int iLRParent;
    UpdateHeight(st, pMinBST, pMinBSTParent, iLRParent);
    
if(pMinBST!=0//It exists. need balance.
    {
        DoBalance(pMinBST, pMinBSTParent, iLRParent);
    }

    
return 0;
}

TreeNode
* CAVLTree::FindNode(int iVal)
{
    TreeNode
* pNode = m_pRoot;
    
while (pNode!=0)
    {
        
if(iVal<pNode->iData)
            pNode 
= pNode->pLeft;
        
else if(iVal>pNode->iData)
            pNode 
= pNode->pRight;
        
else
            
return pNode;
    }

    
return 0;
}

void CAVLTree::SwapTwoNodes(TreeNode *pNode1, TreeNode *pNode2)
{
    
int iDataTmp = pNode1->iData;

    pNode1
->iData = pNode2->iData;

    pNode2
->iData = iDataTmp;
}

#ifdef _DEBUG

void CAVLTree::PrintTree()
{
    printf(
"--------------------\n");
    
if(m_pRoot==0)
    {
        printf(
"null tree.\n");
        
return;
    }
    Queue que(
100);
    que.Enqueue(m_pRoot);
    TreeNode
* pNode;
    
while (0!=que.Dequeue(pNode))
    {
        
if(pNode->pLeft!=0 && pNode->pRight!=0)
        {
            printf(
"%d(%d) -> %d %d\n", pNode->iData, pNode->iHeight, pNode->pLeft->iData, pNode->pRight->iData);
            que.Enqueue(pNode
->pLeft);
            que.Enqueue(pNode
->pRight);
        }
        
else if(pNode->pLeft!=0)
        {
            que.Enqueue(pNode
->pLeft);
            printf(
"%d(%d) -> %d x\n", pNode->iData, pNode->iHeight, pNode->pLeft->iData);
        }
        
else if(pNode->pRight!=0)
        {
            que.Enqueue(pNode
->pRight);
            printf(
"%d(%d) -> x %d\n", pNode->iData, pNode->iHeight, pNode->pRight->iData);
        }
    }
}

#endif

// Main
//////////////////////////////////////////////////////////////////////////
int main(int argc, char* argv[])
{
    CAVLTree avl;
    avl.Insert(
14);
    avl.Insert(
11);
    avl.Insert(
13);
    avl.Insert(
1);
    avl.Insert(
4);
    avl.Insert(
3);
    avl.Insert(
15);
    avl.Insert(
2);
    avl.Insert(
9);
    avl.Insert(
10);
    avl.Insert(
8);
    avl.Insert(
7);

    avl.Delete(
10);
    avl.Delete(
8);
    avl.Delete(
7);
    avl.Delete(
13);
#ifdef _DEBUG
    avl.PrintTree();
#endif

    
return 0;
}

代码中有些注释显示得不太正常,这是因为这个博客中的代码部分不适用等宽字符的缘故,拿到你的IDE下看就正常了。

转自:http://www.cppblog.com/guogangj/archive/2009/10/26/99502.html

相关文章推荐

查找结构 动态查找树比较 树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree)

我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree)。这四种树都具备下面几个优势: (1) 都是动态结构。在删除,插入...
  • scdxmoe
  • scdxmoe
  • 2013年11月21日 20:25
  • 1025

二叉查找树BST

  • 2015年12月13日 15:34
  • 357KB
  • 下载

AVL树-自平衡二叉查找树(Java实现)

在计算机科学中,AVL树是最先发明的自平衡二叉查找树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorith...

Java基础 - 平衡二叉查找树(AVL树)

平衡二叉查找树(height balanced binary search tree)在1962年由Adelson-Velskii和Landis提出,因此又称为AVL树。AVL树定义为:一棵空树是平衡...

算法系列(九)平衡二叉查找树AVL树

在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。一棵AVL树...

C++ AVL树 自平衡二叉查找树

AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个儿子子树的高度最大差别为一,所以它也被称为高度平衡树。 查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过...
  • xia4o
  • xia4o
  • 2015年09月04日 11:01
  • 316

算法学习 - 平衡二叉查找树实现(AVL树)

平衡二叉查找树 平衡二叉查找树是很早出现的平衡树,因为所有子树的高度差不超过1,所以操作平均为O(logN)。 平衡二叉查找树和BS树很像,插入和删除操作也基本一样,但是每个节点多了一个高度的...

平衡二叉查找树 [AVL]

【查找结构3】平衡二叉查找树 [AVL] 博客分类:  数据结构 & 算法 数据结构F#算法  在上一个专题中,我们在谈论二叉查找树的效率的时候。不同结构的二叉查找树,查找...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:二叉查找树(BST)和平衡二叉查找树(AVL)
举报原因:
原因补充:

(最多只允许输入30个字)