# Project Euler：Problem 56 Powerful digit sum

A googol (10100) is a massive number: one followed by one-hundred zeros; 100100 is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only 1.

Considering natural numbers of the form, ab, where a, b < 100, what is the maximum digital sum?

#include <iostream>
#include <string>
using namespace std;

string num2str(int n)
{
string ans = "";
while (n)
{
int a = n % 10;
char b = a + '0';
ans = b + ans;
n /= 10;
}
return ans;
}

void reverse_data(string &data)
{
char temp = '0';
int start = 0;
int end = data.size() - 1;

while (start < end)
{
temp = data[start];
data[start++] = data[end];
data[end--] = temp;
}
}

void compute_value(string lhs, string rhs, string &result)
{
reverse_data(lhs);
reverse_data(rhs);
int i = 0, j = 0, res_i = 0;
int tmp_i = 0;
int carry = 0;

for (i = 0; i != lhs.size(); ++i, ++tmp_i)
{
res_i = tmp_i;  //在每次计算时，结果存储的位需要增加
for (j = 0; j != rhs.size(); ++j)
{
carry += (result[res_i] - '0') + (lhs[i] - '0') * (rhs[j] - '0');//此处注意，每次计算并不能保证以前计算结果的进位都消除， 并且以前的计算结果也需考虑。
result[res_i++] = (carry % 10 + '0');
carry /= 10;
}
while (carry)//乘数的一次计算完成，可能存在有的进位没有处理
{
result[res_i++] = (carry % 10 + '0');
carry /= 10;
}
}
for (int i = result.size() - 1; i >= 0; i--)
{
if (result[i] != '0')
break;
else
result.pop_back();
}

reverse_data(result);
}

int count_num(string s)
{
int count = 0;
for (int i = 0; i < s.length(); i++)
{
count += s[i] - '0';
}
return count;
}

int powe(string a, int b)
{
string res = a;
for (int ii = 1; ii < b; ii++)
{
string tmp(res.length() + a.length(), '0');
compute_value(res, a, tmp);
res = tmp;
}
int count = count_num(res);
return count;
}

int main()
{

int maxc = 0;
for (int a = 1; a < 100; a++)
{
for (int b = 1; b < 100; b++)
{
string s = num2str(a);
int ans = powe(s, b);
if (ans>maxc)
maxc = ans;
}
}
cout << maxc << endl;
system("pause");
return 0;
}


• 本文已收录于以下专栏：

## Project-Euler problem 1-50

• u011401504
• 2015年01月31日 00:09
• 2034

## Project Euler：Problem 63 Powerful digit counts

The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is...
• youb11
• 2015年07月14日 17:04
• 977

## Project Euler：Problem 51 Prime digit replacements

By replacing the 1st digit of the 2-digit number *3, it turns out that six of the nine possible valu...
• youb11
• 2015年07月01日 19:58
• 540

## project euler Problem 56

def Func(a,b): num=0 sum=a**b s=str(sum) for i in s: num=num+int(i) retu...
• jkhere
• 2013年03月25日 10:48
• 450

## Project Euler Problem 16 Power digit sum

Power digit sum Problem 16 215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. ...
• tigerisland45
• 2017年03月22日 19:27
• 214

## Project Euler：Problem 16 Power digit sum

215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of t...
• youb11
• 2015年05月31日 09:56
• 689

## project euler 13

Large sum Work out the first ten digits of the sum of the following one-hundred 50-digit numbers....
• whuawell
• 2015年12月04日 20:45
• 264

## Project Euler Problem 20 Factorial digit sum

Factorial digit sum Problem 20 n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10...
• tigerisland45
• 2017年03月23日 00:10
• 409

## Project Euler：Problem 20 Factorial digit sum

n! means n × (n − 1) × ... × 3 × 2 × 1 For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800, and ...
• youb11
• 2015年05月31日 15:05
• 782

## project euler 101

Problem 101 Optimum polynomial If we are presented with the first k terms of a sequence it...
• whuawell
• 2015年12月23日 22:19
• 169

举报原因： 您举报文章：Project Euler：Problem 56 Powerful digit sum 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)