Binary Tree Level Order Traversal

原创 2017年01月02日 21:36:54

Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).

For example:
Given binary tree [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7

return its level order traversal as:

[
  [3],
  [9,20],
  [15,7]
]

对树进行层次遍历,当然啦,第一想法是递归,

public class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        int depth = 1;
        List<List<Integer>> lst = new ArrayList<List<Integer>>();
        levelOrder(lst,depth,root);
        return lst;
    }
    public void levelOrder(List<List<Integer>> lst,int depth,TreeNode root){
        if(root == null){
            return;
        }else{
            if(lst.size() < depth){
                List<Integer> lsIn = new ArrayList<Integer>();
                lst.add(lsIn);
            }
            List<Integer> ls = lst.get(depth - 1);
            ls.add(root.val);
            if(root.left != null){
                 levelOrder(lst,depth+1,root.left);
            }
            if(root.right != null){
                levelOrder(lst,depth+1,root.right);
            }
           
        }
        
    }
}

战胜了37.78%,效率的确不高。于是我们修改一下代码,利用链表进行操作。

public class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
		int cnt = 0;
		int f = 0;
		int t = 1;
		List<List<Integer>> lsts = new ArrayList<List<Integer>>();
		List<Integer> lst = new ArrayList<Integer>();
		List<TreeNode> nodeList = new ArrayList<TreeNode>();
		nodeList.add(root);
		if(root == null){
			return 	lsts;
		}
		while(t != 0){
            if(f == t){
            	t = cnt;
            	f = 0;
            	cnt = 0;
            	lsts.add(lst);
            	lst = new ArrayList<Integer>();
            }
            else{
            	TreeNode node = nodeList.get(0);
            	if(node != null){
            		f ++;
            		lst.add(node.val);
            	}
            	if(node.left != null){
            		cnt ++;
            		nodeList.add(node.left);
            	}
            	if(node.right != null){
            		cnt ++;
            		nodeList.add(node.right);
            	}
            	nodeList.remove(node);
            }
		}
	    return 	lsts;
    }
}

可是效率真的太低了,只战胜了11.63%,究其原因是不断的删除元素的操作引起的。我们除去删除的操作。每次生成新的链表存储每层的节点。

public List<List<Integer>> levelOrder(TreeNode root) {
		int cnt = 0;
		int f = 0;
		int t = 1;
		List<List<Integer>> lsts = new ArrayList<List<Integer>>();
		List<Integer> lst = new ArrayList<Integer>();
		List<TreeNode> nodeList = new ArrayList<TreeNode>();
		nodeList.add(root);
		if(root == null){
			return 	lsts;
		}
		while(t != 0){
            if(f == t){
            	t = cnt;
            	f = 0;
            	cnt = 0;
            	lsts.add(lst);
            	lst = new ArrayList<Integer>();
            }
            else{
            	TreeNode node = nodeList.get(0);
            	if(node != null){
            		f ++;
            		lst.add(node.val);
            	}
            	if(node.left != null){
            		cnt ++;
            		nodeList.add(node.left);
            	}
            	if(node.right != null){
            		cnt ++;
            		nodeList.add(node.right);
            	}
            	nodeList.remove(0);
            }
		}
	    return 	lsts;
    }


效率还是不高哦,战胜了37.78% 。我们该怎么优化呢? 于是我们可以利用一个链表进行操作,由下标进行确定每层的节点。

public List<List<Integer>> levelOrder(TreeNode root) {
	int cnt = 0;
		int f = 0;
		int t = 1;
		int index; 
		List<List<Integer>> lsts = new ArrayList<List<Integer>>();
		List<Integer> lst = new ArrayList<Integer>();
		List<TreeNode> nodeList = new ArrayList<TreeNode>();
		nodeList.add(root);
		if(root == null){
			return 	lsts;
		}
		index = 0;
		while(t != 0){
            if(f == t){
            	t = cnt;
            	f = 0;
            	cnt = 0;
            	lsts.add(lst);
            	lst = new ArrayList<Integer>();
            }
            else{
            	TreeNode node = nodeList.get(index ++);
            	if(node != null){
            		f ++;
            		lst.add(node.val);
            	}
            	if(node.left != null){
            		cnt ++;
            		nodeList.add(node.left);
            	}
            	if(node.right != null){
            		cnt ++;
            		nodeList.add(node.right);
            	}
            }
		}
	    return 	lsts;
    }

此次战胜了87.36% 。

Binary Tree Traversal二叉树遍历方法总结

Binary Tree Traversal二叉树遍历方法总结这里总结的二叉树遍历分为两大类: 深度优先(depth-first traversal) 广度优先(breadth-first traver...
  • jackey_jk
  • jackey_jk
  • 2016年04月01日 02:58
  • 770

LeetCode 144 Binary Tree Preorder Traversal(二叉树的前序遍历)+(二叉树、迭代)

翻译给定一个二叉树,返回其前序遍历的节点的值。例如: 给定二叉树为 {1,#, 2, 3} 1 \ 2 / 3 返回 [1, 2, 3]备注:用递归是微不足道的,...
  • NoMasp
  • NoMasp
  • 2016年03月19日 16:15
  • 3083

把二叉树打印成多行 按之字形顺序打印二叉树 binary tree zigzag level order traversal

把二叉树打印成多行 题目描述 从上到下按层打印二叉树,同一层结点从左至右输出。每一层输出一行。 import java.util.*; /* public class TreeNod...
  • DuanLiuchang
  • DuanLiuchang
  • 2016年09月12日 21:02
  • 368

Binary Tree Level Order Traversal II 从底部倒着输出二叉树每一层的元素

Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left...
  • chenyx90
  • chenyx90
  • 2016年01月07日 13:54
  • 147

Binary Tree Level Order Traversal II 二叉树层次遍历(广搜,queue)(重重)

题目: 点击打开链接 解答: 上一题采用的深搜+记录深度的fangh
  • skyoceanlover
  • skyoceanlover
  • 2014年08月24日 21:55
  • 530

pat 甲1127. ZigZagging on a Tree (已知后序及中序建树,并层次往返输出)

1127. ZigZagging on a Tree (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 1...
  • qq_27601815
  • qq_27601815
  • 2017年03月05日 18:01
  • 830

二叉树 level order 遍历问题汇总

一 如何确定层结束? 1 维护一个levelEnd,如果当前结点是level end,更新levelEnd 为queue.back(),注意先判断queue是否empty,(最后一层结束后,queue...
  • binling
  • binling
  • 2014年12月26日 16:29
  • 397

二叉搜索树(Binary Search Tree )的定义及分析

定义:     二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 每个结点都有一个作为搜索依据的关键码(key),所有结点的关键码互不相同。 左子树(如果非空)上所...
  • jsh13417
  • jsh13417
  • 2013年01月22日 21:59
  • 3346

二叉搜索树(Binary Search Tree)的插入与删除

二叉搜索树的插入关键是要找到元素应该插入的位置,可以采用与Find类似的方法。 二叉搜索树的删除则要考虑三种情况:   1.要删除的是叶节点:直接删除,并再修改其父节点指针置为NULL ...
  • song_hui_xiang
  • song_hui_xiang
  • 2015年08月16日 13:10
  • 984

数据结构(Java语言)——BinarySearchTree简单实现

二叉树的一个重要应用是它们在查找中的使用。使二叉树成为二叉查找树的性质是,对于树中的每个节点X,它的左子树中所有项的值都大于X中的项。注意,这意味着该树所有的元素都可以用某种一致的方式排序。 现在给出...
  • zhang_zp2014
  • zhang_zp2014
  • 2015年08月14日 21:55
  • 930
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Binary Tree Level Order Traversal
举报原因:
原因补充:

(最多只允许输入30个字)