关闭

粒子滤波(Particle Filter)的通俗解释

2540人阅读 评论(0) 收藏 举报
分类:

其实,粒子叫作估计器estimator。估计过去叫平滑smoothing,估计未来叫预测prediction,估计当前值才叫滤波filtering。粒子滤波算法源于蒙特卡洛思想,即以某事件出现的频率来指代该事件的概率。通俗的讲,粒子滤波也是能用已知的一些数据预测未来的数据。我们知道,科尔曼滤波限制噪声时服从高斯分布的,但是粒子滤波可以不局限于高斯噪声,原理上粒子滤波可以驾驭所有的非线性、非高斯系统。

一个比喻

某年月,警方(跟踪程序)要在某个城市的茫茫人海(采样空间)中跟踪寻找一个罪犯(目标),警方采用了粒子滤波的方法。

1. 初始化:

警方找来了一批警犬(粒子),并且让每个警犬预先都闻了罪犯留下来的衣服的味道(为每个粒子初始化状态向量S0),然后将警犬均匀布置到城市的各个区(均匀分布是初始化粒子的一种方法,另外还有诸如高斯分布,即:将警犬以罪犯留衣服的那个区为中心来扩展分布开来)。

2. 搜索:

每个警犬都闻一闻自己位置的人的味道(粒子状态向量Si),并且确定这个味道跟预先闻过的味道的相似度(计算特征向量的相似性),这个相似度的计算最简单的方法就是计算一个欧式距离(每个粒子i对应一个相似度Di),然后做归一化(即:保证所有粒子的相似度之和为1)。

3. 决策:

总部根据警犬们发来的味道相似度确定罪犯出现的位置(概率上最大的目标):最简单的决策方法为哪个味道的相似度最高,那个警犬处的人就是目标。

4. 重采样:

总部根据上一次的决策结果,重新布置下一轮警犬分布(重采样过程)。最简单的方法为:把相似度比较小的地区的警犬抽调到相似度高的地区。

上述,2,3,4过程重复进行,就完成了粒子滤波跟踪算法的全过程。


 粒子滤波的核心思想是随机采样+重要性重采样。既然不知道目标在哪里,那我就随机的放狗(随机采样)。放完狗后,根据特征相似度计算每个地区人和罪犯的相似度,然后在重要的地方再多放狗,不重要的地方就少放狗(重要性采样)。


参考:

http://www.cnblogs.com/konlil/archive/2012/02/05/2339142.html

1
0
查看评论

粒子滤波(Particle filter)算法简介及MATLAB实现

例子滤波是以贝叶斯推理和重要性采样为基本框架的。因此,想要掌握例子滤波,对于上述两个基本内容必须有一个初步的了解。
  • qq_27923041
  • qq_27923041
  • 2017-02-20 10:28
  • 5491

Particle Filter Tutorial 粒子滤波:从推导到应用(一)

前言:       博主在自主学习粒子滤波的过程中,看了很多文献或博客,不知道是看文献时粗心大意还是悟性太低,看着那么多公式,总是无法把握住粒子滤波的思路,也无法将理论和实践对应起来。比如:理论推导过程中那么多概率公式,为什么计算出后验概率就能估计出系统状态呢,概率怎么...
  • heyijia0327
  • heyijia0327
  • 2014-11-08 22:24
  • 35947

用俗话讲讲卡尔曼滤波与粒子滤波

一,卡尔曼滤波 卡尔曼滤波可以根据一些已知的量来预测未知的量,这些量受到的干扰必须得近似高斯噪声。这个东西可以用来干什么呢?例如我们可以用来预测明天,后天,未来好几天的温度。我们可以在前几天用温度计记录下一系列的温度数据作为我们未来预测的参考数据之一,然后我们根据一年四季的温度变化作为参考数据之二...
  • sac761
  • sac761
  • 2016-07-24 21:34
  • 7327

关于卡尔曼滤波和粒子滤波最直白的解释

卡尔曼滤波本来是控制系统课上学的,当时就没学明白,也蒙混过关了,以为以后也不用再见到它了,可惜没这么容易,后来学计算机视觉和图像处理,发现用它的地方更多了,没办法的时候只好耐心学习和理解了。一直很想把学习的过程记录一下,让大家少走弯路,可惜总也没时间和机会,直到今天。。。 我一直有一个愿望,就是把...
  • passball
  • passball
  • 2015-03-25 14:40
  • 23502

粒子滤波

粒子滤波(PF:Particle Filter)&与卡尔曼滤波(Kalman Filter)相比较   粒子滤波(PF: Particle Filter)的思想基于蒙特卡洛方法(Monte Carlo methods),它是利用粒子集来表示概率,可以用在任何形式的状态空间模型上。其...
  • yang090510118
  • yang090510118
  • 2014-10-17 11:06
  • 3119

对粒子滤波算法的理解 特别通俗易懂

转自:http://blog.csdn.net/sinat_31135199/article/details/55262359 转自:http://www.cnblogs.com/yangyangcv/archive/2010/05/23/1742263.html 一直都觉得粒子滤波是个挺牛的东...
  • jjw_csdn
  • jjw_csdn
  • 2017-11-30 15:04
  • 188

从卡尔曼滤波到粒子滤波 很详细,很明了。。

转自http://blog.csdn.net/karen99/article/details/7771743 卡尔曼滤波本来是控制系统课上学的,当时就没学明白,也蒙混过关了,以为以后也不用再见到它了,可惜没这么容易,后来学计算机视觉和图像处理,发现用它的地方更多了,没办法的时候只好耐心学习和理...
  • zkl99999
  • zkl99999
  • 2015-06-24 11:19
  • 11250

粒子滤波

之前一直在做移动机器人定位算法。查来查去,发觉粒子滤波算法(又叫MC算法)应该算是最流行的了。因此开始学习使用之。入手的是本英文书叫“probalistic robotic” 很不错,我所见到的讲得最好的一本书。花了大量时间去研读。在这里我想谈谈我对粒子滤波的一点认识。因为在这一领域算是个新手。希望...
  • r91987
  • r91987
  • 2011-06-04 14:37
  • 7289

粒子滤波小结

<br />今天就来说说我看懂了的粒子滤波(Particle Filter)部分。<br />我为啥要在看粒子滤波之前拼命学卡尔曼?因为,粒子滤波和Kalman的模型是一样的。无论是线性还是非线性,它俩的模型都是那个:<br />z_t=h(x_t, v_t);&...
  • tudouniurou
  • tudouniurou
  • 2011-03-25 13:21
  • 22189

基于粒子滤波器的目标跟踪算法及实现

推荐大家看论文《An adaptive color-based particle filter》 接下来,我偷懒了
  • jinshengtao
  • jinshengtao
  • 2014-06-15 10:15
  • 35242
    新家地址
    个人资料
    • 访问:52928次
    • 积分:1311
    • 等级:
    • 排名:千里之外
    • 原创:80篇
    • 转载:8篇
    • 译文:0篇
    • 评论:7条
    文章分类
    最新评论