关闭
当前搜索:

特征抽取与特征选择

特征抽取:特征抽取后的新特征是原来特征的一个映射 特征选择:特征选择后的特征是原来特征的一个子集 特征抽取的方法主要是通过属性间的关系,如组合不同的属性得到新的属性,这样就改变了原来的特征空间。 特征选择的方法是从原始特征数据集中选择出子集,是一种包含关系,没有改变原始的特征空间。 特征抽取:PCA和LDA 主要有两个类别: 信号表示:特...
阅读(191) 评论(0)

卡尔曼滤波(Kalman Filter)的通俗解释

intuitive explain: 作者:Kent Zeng 链接:https://www.zhihu.com/question/23971601/answer/26254459 假设你有两个传感器,测的是同一个信号。可是它们每次的读数都不太一样,怎么办? 取平均。 再假设你知道其中贵的那个传感器应该准一些,便宜的那个应该差一些。那有比取平均更好的办法吗?...
阅读(741) 评论(0)

压缩感知(compressed sensing)的通俗解释

在我看来,压缩感知是信号处理领域进入21世纪以来取得的最耀眼的成果之一,并在磁共振成像、图像处理等领域取得了有效应用。压缩感知理论在其复杂的数学表述背后蕴含着非常精妙的思想。基于一个有想象力的思路,辅以严格的数学证明,压缩感知实现了神奇的效果,突破了信号处理领域的金科玉律——奈奎斯特采样定律。即,在信号采样的过程中,用很少的采样点,实现了和全采样一样的效果。 ------------------...
阅读(1847) 评论(0)

一幅图弄清DFT与DTFT,FFT的关系

很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系。 首先说明一下,我不是数字信号处理专家,因此这里只站在学生的角度以最浅显易懂的性质来解释问题,而不涉及到任何公式运算。 学过卷积,我们都知道有时域卷积定理和频域...
阅读(602) 评论(0)

小波变换(wavelet transform)的通俗解释(一)

从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。 下面我就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。 一、傅里叶变换 关于傅里叶变换的基本概念在此我就不再赘述了,默认大家现在正处在理解了傅里叶但还没理...
阅读(2122) 评论(0)

小波变换(wavelet transform)的通俗解释(二)

上篇文章已经说得很详细了,这边文章作为补充。 首先是一个宏观的例子: 相信大家都看过油画。 对于特别巨幅的油画, 不知道有没有过体会, 油画是只可远观而不可亵玩? 当你在足够远的距离观察油画时, 油画所表达的内容是有层次且内容丰富的, 但是当你靠近油画甚至贴在油画上看时, 你只能看到一个个的小色块, 而此时这些小色块此时变成毫无意义的无规则排列。 我们假设油画中的每个小色块都对应某...
阅读(1370) 评论(0)

集成学习概述(二)随机子空间 Random subspace method and stacking

六、随机子空间  Random subspace method Random subspace method(RSM)又叫attribute bagging 或者 feature bagging,是集成学习的一种。随机子空间通过使用随机的部分特征而不是所有的特征来训练每个分类器,来降低每个分类器之间的相关性。 类似bagging, bagging是随机使用部分训练数据,而Random subs...
阅读(1743) 评论(0)

集成学习概述(一)introduction of ensemble learning

一.概念性介绍,   集成学习(ensemble learning),又被叫做多分类器系统(multi-classifer system,注意停顿,多,分类器,也即多个分类器的意思)或者基于委员会的学习(committee-based learning)。 个体学习器可以是同种类型的学习器,此时个体学习器通常又被称作基学习器(base learner),也可以使用不同种学习器,此时个体学...
阅读(402) 评论(0)
    新家地址
    个人资料
    • 访问:52927次
    • 积分:1311
    • 等级:
    • 排名:千里之外
    • 原创:80篇
    • 转载:8篇
    • 译文:0篇
    • 评论:7条
    文章分类
    最新评论