关闭

uva 10529 Dumb Bones 区间期望dp ★★

标签: dpuva
193人阅读 评论(0) 收藏 举报
分类:

题意:

现在要铺设多米诺骨牌,放置一次左倒的概率是PL,右倒的概率是PR,他们的和不超过0.5。现在用最优的铺设方法,问铺好n(n<=1000)张牌放置次数的期望。


解法:

感觉自己概率期望dp根本没入门啊…
对于区间dp这方面很显然要枚举最后一次放牌的位置。由此就划分成了两个互不干涉的区间。

然后参考了大牛的博客:
这题关键状态转移是这样推导出来的。

1.现在只需放置一张牌,问放置次数的期望是多少。

2.对于区间中最后一张牌需要放k次。那么左倒多少次?右倒多少次?


代码:

#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<iomanip>
using namespace std;

#define all(x) (x).begin(), (x).end()
#define for0(a, n) for (int (a) = 0; (a) < (n); (a)++)
#define for1(a, n) for (int (a) = 1; (a) <= (n); (a)++)
#define mes(a,x,s)  memset(a,x,(s)*sizeof a[0])
#define mem(a,x)  memset(a,x,sizeof a)
#define ysk(x)  (1<<(x))
typedef long long ll;
typedef pair<int, int> pii;
const int INF =0x3f3f3f3f;
const int maxn=1000    ;
int n;
double PL,PR;
double dp[maxn+5];
const double eps=1e-10;
int dcmp(double x)
{
    if(fabs(x)<eps)  return 0;
    else return x<0?-1:1;
}
double DP(int x)
{
    if(dcmp(dp[x])>=0 )  return dp[x];
    if(x==0)  return dp[x]=0;
    if(x==1)  return dp[x]=1.0/(1-PL-PR);
    dp[x]=INF;
    for(int i=1;i<=x;i++)
    {
        int le=i-1,ri=x-i;
        dp[x]=min(dp[x],(1-PR)/(1-PL-PR)*DP(le)+(1-PL)/(1-PL-PR)*DP(ri)+1.0/(1-PL-PR));
    }
    return dp[x];
}
int main()
{
   std::ios::sync_with_stdio(false);
   while(cin>>n&&n)
   {
       cin>>PL>>PR;
       for0(i,n+1) dp[i]=-1;
       cout<<fixed<<setprecision(2)<<DP(n)<<endl;
   }
   return 0;
}



公式:

E[1]=11PLPR
=PL1PLPR
=PR1PLPR
E=E[]+E[]+11PLPR+PL1PLPRE[]+PR1PLPRE[]
=11PLPR+1PR1PLPRE[]+1PL1PLPRE[]

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:136105次
    • 积分:7458
    • 等级:
    • 排名:第2898名
    • 原创:638篇
    • 转载:17篇
    • 译文:0篇
    • 评论:10条
    最新评论