关闭

关于入侵检测系统常用的几种检测方法

918人阅读 评论(0) 收藏 举报
入侵检测系统常用的检测方法有特征检测、统计检测与专家系统。据公安部计算机信息系统安全产品质量监督检验中心的报告,国内送检的入侵检测产品中95%是属于使用入侵模板进行模式匹配的特征检测产品,其他5%是采用概率统计的统计检测产品与基于日志的专家知识库系产品。

  特征检测

  特征检测对已知的攻击或入侵的方式作出确定性的描述,形成相应的事件模式。当被审计的事件与已知的入侵事件模式相匹配时,即报警。原理上与专家系统相仿。其检测方法上与计算机病毒的检测方式类似。目前基于对包特征描述的模式匹配应用较为广泛。该方法预报检测的准确率较高,但对于无经验知识的入侵与攻击行为无能为力。

  统计检测

  统计模型常用异常检测,在统计模型中常用的测量参数包括:审计事件的数量、间隔时间、资源消耗情况等。常用的入侵检测5种统计模型为:

  1、操作模型,该模型假设异常可通过测量结果与一些固定指标相比较得到,固定指标可以根据经验值或一段时间内的统计平均得到,举例来说,在短时间内的多次失败的登录很有可能是口令尝试攻击;

  2、方差,计算参数的方差,设定其置信区间,当测量值超过置信区间的范围时表明有可能是异常;

  3、多元模型,操作模型的扩展,通过同时分析多个参数实现检测;

  4、马尔柯夫过程模型,将每种类型的事件定义为系统状态,用状态转移矩阵来表示状态的变化,当一个事件发生时,或状态矩阵该转移的概率较小则可能是异常事件;

  5、时间序列分析,将事件计数与资源耗用根据时间排成序列,如果一个新事件在该时间发生的概率较低,则该事件可能是入侵。

  统计方法的最大优点是它可以“学习”用户的使用习惯,从而具有较高检出率与可用性。但是它的“学习”能力也给入侵者以机会通过逐步“训练”使入侵事件符合正常操作的统计规律,从而透过入侵检测系统。

  专家系统

  用专家系统对入侵进行检测,经常是针对有特征入侵行为。所谓的规则,即是知识,不同的系统与设置具有不同的规则,且规则之间往往无通用性。专家系统的建立依赖于知识库的完备性,知识库的完备性又取决于审计记录的完备性与实时性。入侵的特征抽取与表达,是入侵检测专家系统的关键。在系统实现中,将有关入侵的知识转化为if-then结构(也可以是复合结构),条件部分为入侵特征,then部分是系统防范措施。运用专家系统防范有特征入侵行为的有效性完全取决于专家系统知识库的完备性。

  文件完整性检查

  文件完整性检查系统检查计算机中自上次检查后文件变化情况。文件完整性检查系统保存有每个文件的数字文摘数据库,每次检查时,它重新计算文件的数字文摘并将它与数据库中的值相比较,如不同,则文件已被修改,若相同,文件则未发生变化。

  文件的数字文摘通过Hash函数计算得到。不管文件长度如何,它的Hash函数计算结果是一个固定长度的数字。与加密算法不同,Hash算法是一个不可逆的单向函数。采用安全性高的Hash算法,如MD5、SHA时,两个不同的文件几乎不可能得到相同的Hash结果。从而,当文件一被修改,就可检测出来。在文件完整性检查中功能最全面的当属Tripwire。

  文件完整性检查系统的优点

  从数学上分析,攻克文件完整性检查系统,无论是时间上还是空间上都是不可能的。文件完整性检查系统是非常强劲的检测文件被修改的工具。实际上,文件完整性检查系统是一个检测系统被非法使用的最重要的工具之一。

  文件完整性检查系统具有相当的灵活性,可以配置成为监测系统中所有文件或某些重要文件。

  当一个入侵者攻击系统时,他会干两件事,首先,他要掩盖他的踪迹,即他要通过更改系统中的可执行文件、库文件或日志文件来隐藏他的活动;其它,他要作一些改动保证下次能够继续入侵。这两种活动都能够被文件完整性检查系统检测出。

  文件完整性检查系统的弱点

  文件完整性检查系统依赖于本地的文摘数据库。与日志文件一样,这些数据可能被入侵者修改。当一个入侵者取得管理员权限后,在完成破坏活动后,可以运行文件完整性检查系统更新数据库,从而瞒过系统管理员。当然,可以将文摘数据库放在只读的介质上,但这样的配置不够灵活性。

  做一次完整的文件完整性检查是一个非常耗时的工作,在Tripwire中,在需要时可选择检查某些系统特性而不是完全的摘要,从而加快检查速度。

  系统有些正常的更新操作可能会带来大量的文件更新,从而产生比较繁杂的检查与分析工作,如,在Windows NT系统中升级MS-Outlook将会带来1800多个文件变化。

 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1184284次
    • 积分:10858
    • 等级:
    • 排名:第1469名
    • 原创:47篇
    • 转载:378篇
    • 译文:4篇
    • 评论:211条