第17课:SparkStreaming资源动态申请和动态控制消费速率原理剖析

原创 2016年05月31日 16:08:42

为什么需要动态?
a) Spark默认情况下粗粒度的,先分配好资源再计算。对于Spark Streaming而言有高峰值和低峰值,但是他们需要的资源是不一样的,如果按照高峰值的角度的话,就会有大量的资源浪费。
b) Spark Streaming不断的运行,对资源消耗和管理也是我们要考虑的因素。
Spark Streaming资源动态调整的时候会面临挑战:
Spark Streaming是按照Batch Duration运行的,Batch Duration需要很多资源,下一次Batch Duration就不需要那么多资源了,调整资源的时候还没调整完Batch Duration运行就已经过期了。这个时候调整时间间隔。

SparkStreaming资源动态申请
1. 在SparkContext中默认是不开启动态资源分配的,但是可以通过手动在SparkConf中配置。

// Optionally scale number of executors dynamically based on workload. Exposed for testing.
val dynamicAllocationEnabled = Utils.isDynamicAllocationEnabled(_conf)
if (!dynamicAllocationEnabled && 
//参数配置是否开启资源动态分配
_conf.getBoolean("spark.dynamicAllocation.enabled", false)) {
  logWarning("Dynamic Allocation and num executors both set, thus dynamic allocation disabled.")
}
 
_executorAllocationManager =
  if (dynamicAllocationEnabled) {
    Some(new ExecutorAllocationManager(this, listenerBus, _conf))
  } else {
    None
  }
_executorAllocationManager.foreach(_.start())
2.  ExecutorAllocationManager: 有定时器会不断的去扫描Executor的情况,正在运行的Stage,要运行在不同的Executor中,要么增加Executor或者减少。
3.  ExecutorAllocationManager中schedule方法会被周期性触发进行资源动态调整。
/**
 * This is called at a fixed interval to regulate the number of pending executor requests
 * and number of executors running.
 *
 * First, adjust our requested executors based on the add time and our current needs.
 * Then, if the remove time for an existing executor has expired, kill the executor.
 *
 * This is factored out into its own method for testing.
 */
private def schedule(): Unit = synchronized {
  val now = clock.getTimeMillis
 
  updateAndSyncNumExecutorsTarget(now)
 
  removeTimes.retain { case (executorId, expireTime) =>
    val expired = now >= expireTime
    if (expired) {
      initializing = false
      removeExecutor(executorId)
    }
    !expired
  }
}
4.  在ExecutorAllocationManager中会在线程池中定时器会不断的运行schedule.
/**
 * Register for scheduler callbacks to decide when to add and remove executors, and start
 * the scheduling task.
 */
def start(): Unit = {
  listenerBus.addListener(listener)
 
  val scheduleTask = new Runnable() {
    override def run(): Unit = {
      try {
        schedule()
      } catch {
        case ct: ControlThrowable =>
          throw ct
        case t: Throwable =>
          logWarning(s"Uncaught exception in thread ${Thread.currentThread().getName}", t)
      }
    }
  }
// intervalMillis定时器触发时间
  executor.scheduleAtFixedRate(scheduleTask, 0, intervalMillis, TimeUnit.MILLISECONDS)
}

动态控制消费速率:
Spark Streaming提供了一种弹性机制,流进来的速度和处理速度的关系,是否来得及处理数据。如果不能来得及的话,他会自动动态控制数据流进来的速度,spark.streaming.backpressure.enabled参数设置。

  • 资料来源于:DT_大数据梦工厂(Spark发行版本定制

  • DT大数据梦工厂微信公众号:DT_Spark 

  • 新浪微博:http://www.weibo.com/ilovepains

  • 王家林老师每晚20:00免费大数据实战

YY直播:68917580



 

相关文章推荐

Spark Streaming资源动态申请和动态控制消费速率原理剖析

为什么需要动态? a) Spark默认情况下粗粒度的,先分配好资源再计算。对于Spark Streaming而言有高峰值和低峰值,但是他们需要的资源是不一样的,如果按照高峰值的角度的话,就会有大量...

Spark 定制版:017~Spark Streaming资源动态申请和动态控制消费速率原理剖析

本讲内容:a. Spark Streaming资源动态分配 b. Spark Streaming动态控制消费速率注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)...

ASP.NET中动态控制RDLC报表

  • 2012年05月24日 13:24
  • 19KB
  • 下载

FORM开发技术之动态控制某些item的属性

利用FORM内置函数控制ITEM包括按钮,普通ITEM等等的属性,更多内置函数学习课参考我的博客FORM内置系统函数 http://blog.csdn.net/cai_xingyun/artic...

动态控制卡

  • 2013年09月23日 18:32
  • 8.2MB
  • 下载

jquery 动态控制表格,添加,删除,上移,下移,排序

这个功能的实现主要运用了jquery  的遍历和DOM操作 .prev()获得匹配元素集合中每个元素紧邻的前一个同辈元素,由选择器筛选(可选)。 .next()获得匹配元素集合中每个元素紧邻的同辈元素...

动态控制RelativeLayout的组件

  • 2015年10月03日 21:06
  • 2.47MB
  • 下载

script 动态控制

  • 2013年01月31日 10:16
  • 22KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第17课:SparkStreaming资源动态申请和动态控制消费速率原理剖析
举报原因:
原因补充:

(最多只允许输入30个字)