第15课:Spark Streaming源码解读之No Receivers彻底思考

原创 2016年05月31日 16:12:01


背景: 
    目前No Receivers在企业中使用的越来越多。No Receivers具有更强的控制度,语义一致性。No Receivers是我们操作数据来源自然方式,操作数据来源使用一个封装器,且是RDD类型的。所以Spark Streaming就产生了自定义RDD –> KafkaRDD.

源码分析: 
1. KafkaRDD:

**

 * A batch-oriented interface for consuming from Kafka.

 * Starting and ending offsets are specified in advance,

 * so that you can control exactly-once semantics.

 * @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">

 * configuration parameters</a>. Requires "metadata.broker.list" or "bootstrap.servers" to be set

 * with Kafka broker(s) specified in host1:port1,host2:port2 form.

 * @param offsetRanges offset ranges that define the Kafka data belonging to this RDD

 * @param messageHandler function for translating each message into the desired type

 */

private[kafka]

class KafkaRDD[

  K: ClassTag,

  V: ClassTag,

  U <: Decoder[_]: ClassTag,//因为传输的时候需要编码,所以需要Decoder

  T <: Decoder[_]: ClassTag,

  R: ClassTag] private[spark] (

    sc: SparkContext,

    kafkaParams: Map[String, String],

    val offsetRanges: Array[OffsetRange],//offsetRanges指定数据范围

    leaders: Map[TopicAndPartition, (String, Int)],

    messageHandler: MessageAndMetadata[K, V] => R

  ) extends RDD[R](sc, Nil) with Logging with HasOffsetRanges {

2.  HasOffsetRanges: RDD是a list of partitions.

/**

 * Represents any object that has a collection of [[OffsetRange]]s. This can be used to access the

 * offset ranges in RDDs generated by the direct Kafka DStream (see

 * [[KafkaUtils.createDirectStream()]]).

 * {{{

//foreachRDD就可以获取当前batch Duractions中的产生的RDD的分区的数据。

 *   KafkaUtils.createDirectStream(...).foreachRDD { rdd =>

 *      val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges

 *      ...

 *   }

 * }}}

 */

 

trait HasOffsetRanges {

  def offsetRanges: Array[OffsetRange]

}

3.  Count: 此时的范围指的是多少条数据。OffsetRange指定了什么topic下的什么partiiton下的读取数据范围。

/**

 * Represents a range of offsets from a single Kafka TopicAndPartition. Instances of this class

 * can be created with `OffsetRange.create()`.

 * @param topic Kafka topic name

 * @param partition Kafka partition id

 * @param fromOffset Inclusive starting offset

 * @param untilOffset Exclusive ending offset

 */

 

final class OffsetRange private(

    val topic: String,

    val partition: Int,

    val fromOffset: Long,

    val untilOffset: Long) extends Serializable {

  import OffsetRange.OffsetRangeTuple

//offset消息的偏移量

/** Number of messages this OffsetRange refers to */

def count(): Long = untilOffset - fromOffset

1. 在KafkaRDD中getPartition

override def getPartitions: Array[Partition] = {

  offsetRanges.zipWithIndex.map { case (o, i) =>

      val (host, port) = leaders(TopicAndPartition(o.topic, o.partition))

      new KafkaRDDPartition(i, o.topic, o.partition, o.fromOffset, o.untilOffset, host, port)

  }.toArray

}

5.  KafkaRDDPartition:  相当于Kafka数据来源的指针。或者相当于引用。清晰的说明数据在哪里。

/** @param topic kafka topic name

  * @param partition kafka partition id

  * @param fromOffset inclusive starting offset

  * @param untilOffset exclusive ending offset

  * @param host preferred kafka host, i.e. the leader at the time the rdd was created

  * @param port preferred kafka host's port

  */

private[kafka]

class KafkaRDDPartition(

  val index: Int,

  val topic: String,

  val partition: Int,

  val fromOffset: Long,

  val untilOffset: Long,

  val host: String, //就是读取数据来源的host,port同样是

  val port: Int

) extends Partition {

//KafkaRDD的一个partition只能属于一个topic

  /** Number of messages this partition refers to */

  def count(): Long = untilOffset - fromOffset

}

6.  KafkaRDD中的compute计算每个数据分片

override def compute(thePart: Partition, context: TaskContext): Iterator[R] = {

  val part = thePart.asInstanceOf[KafkaRDDPartition]

  assert(part.fromOffset <= part.untilOffset, errBeginAfterEnd(part))

//如果fromOffset和untilOffset相等表面该消息是空

  if (part.fromOffset == part.untilOffset) {

    log.info(s"Beginning offset ${part.fromOffset} is the same as ending offset " +

      s"skipping ${part.topic} ${part.partition}")

    Iterator.empty

  } else {

    new KafkaRDDIterator(part, context)

  }

}

7.  KafkaRDDIterator: 获取数据

private class KafkaRDDIterator(

    part: KafkaRDDPartition,

    context: TaskContext) extends NextIterator[R] {

 

  context.addTaskCompletionListener{ context => closeIfNeeded() }

 

  log.info(s"Computing topic ${part.topic}, partition ${part.partition} " +

    s"offsets ${part.fromOffset} -> ${part.untilOffset}")

 

  val kc = new KafkaCluster(kafkaParams)

  val keyDecoder = classTag[U].runtimeClass.getConstructor(classOf[VerifiableProperties])

    .newInstance(kc.config.props)

    .asInstanceOf[Decoder[K]]

  val valueDecoder = classTag[T].runtimeClass.getConstructor(classOf[VerifiableProperties])

    .newInstance(kc.config.props)

    .asInstanceOf[Decoder[V]]

  val consumer = connectLeader

  var requestOffset = part.fromOffset

  var iter: Iterator[MessageAndOffset] = null

 

  // The idea is to use the provided preferred host, except on task retry atttempts,

  // to minimize number of kafka metadata requests

  private def connectLeader: SimpleConsumer = {

    if (context.attemptNumber > 0) {

      kc.connectLeader(part.topic, part.partition).fold(

        errs => throw new SparkException(

          s"Couldn't connect to leader for topic ${part.topic} ${part.partition}: " +

            errs.mkString("\n")),

        consumer => consumer

      )

    } else {

      kc.connect(part.host, part.port)

    }

  }

 

  private def handleFetchErr(resp: FetchResponse) {

    if (resp.hasError) {

      val err = resp.errorCode(part.topic, part.partition)

      if (err == ErrorMapping.LeaderNotAvailableCode ||

        err == ErrorMapping.NotLeaderForPartitionCode) {

        log.error(s"Lost leader for topic ${part.topic} partition ${part.partition}, " +

          s" sleeping for ${kc.config.refreshLeaderBackoffMs}ms")

        Thread.sleep(kc.config.refreshLeaderBackoffMs)

      }

      // Let normal rdd retry sort out reconnect attempts

      throw ErrorMapping.exceptionFor(err)

    }

  }

 

  private def fetchBatch: Iterator[MessageAndOffset] = {

    val req = new FetchRequestBuilder()

      .addFetch(part.topic, part.partition, requestOffset, kc.config.fetchMessageMaxBytes)

      .build()

    val resp = consumer.fetch(req)

    handleFetchErr(resp)

    // kafka may return a batch that starts before the requested offset

    resp.messageSet(part.topic, part.partition)

      .iterator

      .dropWhile(_.offset < requestOffset)

  }

 

  override def close(): Unit = {

    if (consumer != null) {

      consumer.close()

    }

  }

 

  override def getNext(): R = {

    if (iter == null || !iter.hasNext) {

      iter = fetchBatch

    }

    if (!iter.hasNext) {

      assert(requestOffset == part.untilOffset, errRanOutBeforeEnd(part))

      finished = true

      null.asInstanceOf[R]

    } else {

      val item = iter.next()

      if (item.offset >= part.untilOffset) {

        assert(item.offset == part.untilOffset, errOvershotEnd(item.offset, part))

        finished = true

        null.asInstanceOf[R]

      } else {

        requestOffset = item.nextOffset

        messageHandler(new MessageAndMetadata(

          part.topic, part.partition, item.message, item.offset, keyDecoder, valueDecoder))

      }

    }

  }

}

8.  KafkaCluster:封装了与Kafka集群交互

/**

 * Convenience methods for interacting with a Kafka cluster.

 * @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">

 * configuration parameters</a>.

 *   Requires "metadata.broker.list" or "bootstrap.servers" to be set with Kafka broker(s),

 *   NOT zookeeper servers, specified in host1:port1,host2:port2 form

 */

private[spark]

class KafkaCluster(val kafkaParams: Map[String, String]) extends Serializable {

举例:一般使用KafkaUtils的createDirectStream读取数据。

KafkaUtils.createDirectStream[String,String,StringDecoder,StringDecoder](ssc,kafkaParams,topics)

9.  在使用Kafka的Direct方式操作数据的时候,通过使用

* Create an input stream that directly pulls messages from Kafka Brokers

 * without using any receiver. This stream can guarantee that each message

 * from Kafka is included in transformations exactly once (see points below).

 *

 * Points to note:

 *  - No receivers: This stream does not use any receiver. It directly queries Kafka

 *  - Offsets: This does not use Zookeeper to store offsets. The consumed offsets are tracked

 *    by the stream itself. For interoperability with Kafka monitoring tools that depend on

 *    Zookeeper, you have to update Kafka/Zookeeper yourself from the streaming application.

 *    You can access the offsets used in each batch from the generated RDDs (see

 *    [[org.apache.spark.streaming.kafka.HasOffsetRanges]]).

 *  - Failure Recovery: To recover from driver failures, you have to enable checkpointing

 *    in the [[StreamingContext]]. The information on consumed offset can be

 *    recovered from the checkpoint. See the programming guide for details (constraints, etc.).

 *  - End-to-end semantics: This stream ensures that every records is effectively received and

 *    transformed exactly once, but gives no guarantees on whether the transformed data are

 *    outputted exactly once. For end-to-end exactly-once semantics, you have to either ensure

 *    that the output operation is idempotent, or use transactions to output records atomically.

 *    See the programming guide for more details.

 *

 * @param ssc StreamingContext object

 * @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">

 *   configuration parameters</a>. Requires "metadata.broker.list" or "bootstrap.servers"

 *   to be set with Kafka broker(s) (NOT zookeeper servers), specified in

 *   host1:port1,host2:port2 form.

 *   If not starting from a checkpoint, "auto.offset.reset" may be set to "largest" or "smallest"

 *   to determine where the stream starts (defaults to "largest")

 * @param topics Names of the topics to consume

 * @tparam K type of Kafka message key

 * @tparam V type of Kafka message value

 * @tparam KD type of Kafka message key decoder

 * @tparam VD type of Kafka message value decoder

 * @return DStream of (Kafka message key, Kafka message value)

 */

def createDirectStream[

  K: ClassTag,

  V: ClassTag,

  KD <: Decoder[K]: ClassTag,

  VD <: Decoder[V]: ClassTag] (

    ssc: StreamingContext,

    kafkaParams: Map[String, String],

    topics: Set[String]

): InputDStream[(K, V)] = {

  val messageHandler = (mmd: MessageAndMetadata[K, V]) => (mmd.key, mmd.message)

 

  val kc = new KafkaCluster(kafkaParams)

//kc 是Kafka的集群

//fromOffsets获取具体的偏移量

  val fromOffsets = getFromOffsets(kc, kafkaParams, topics)

  new DirectKafkaInputDStream[K, V, KD, VD, (K, V)](

    ssc, kafkaParams, fromOffsets, messageHandler)

}

    10. getFromOffsets:

private[kafka] def getFromOffsets(

    kc: KafkaCluster,

    kafkaParams: Map[String, String],

    topics: Set[String]

  ): Map[TopicAndPartition, Long] = {

  val reset = kafkaParams.get("auto.offset.reset").map(_.toLowerCase)

  val result = for {

    topicPartitions <- kc.getPartitions(topics).right

    leaderOffsets <- (if (reset == Some("smallest")) {

      kc.getEarliestLeaderOffsets(topicPartitions)

    } else {

      kc.getLatestLeaderOffsets(topicPartitions)

    }).right

  } yield {

    leaderOffsets.map { case (tp, lo) =>

//创建Kafka Direct DStream的时候,他会和Kafka集群进行交互,来获得他的partition和offset的信息。

//实质上是通过DirectKafkaInputDStream

        (tp, lo.offset)

    }

  }

  KafkaCluster.checkErrors(result)

}

    11. 不同topic的partition对应着我们生成的KafkaRDD的partition.

/**

 *  A stream of {@link org.apache.spark.streaming.kafka.KafkaRDD} where

 * each given Kafka topic/partition corresponds to an RDD partition.

 * The spark configuration spark.streaming.kafka.maxRatePerPartition gives the maximum number

 *  of messages

 * per second that each '''partition''' will accept.

 * Starting offsets are specified in advance,

 * and this DStream is not responsible for committing offsets,

 * so that you can control exactly-once semantics.

 * For an easy interface to Kafka-managed offsets,

 *  see {@link org.apache.spark.streaming.kafka.KafkaCluster}

 * @param kafkaParams Kafka <a href="http://kafka.apache.org/documentation.html#configuration">

 * configuration parameters</a>.

 *   Requires "metadata.broker.list" or "bootstrap.servers" to be set with Kafka broker(s),

 *   NOT zookeeper servers, specified in host1:port1,host2:port2 form.

 * @param fromOffsets per-topic/partition Kafka offsets defining the (inclusive)

 *  starting point of the stream

 * @param messageHandler function for translating each message into the desired type

 */

private[streaming]

class DirectKafkaInputDStream[

  K: ClassTag,

  V: ClassTag,

  U <: Decoder[K]: ClassTag,

  T <: Decoder[V]: ClassTag,

  R: ClassTag](

    ssc_ : StreamingContext,

    val kafkaParams: Map[String, String],

    val fromOffsets: Map[TopicAndPartition, Long],

    messageHandler: MessageAndMetadata[K, V] => R

  ) extends InputDStream[R](ssc_) with Logging {

12. DirectKafkaInputDStream源码如下:每次compute之后会产生KafkaRDD

override def compute(validTime: Time): Option[KafkaRDD[K, V, U, T, R]] = {

// untilOffsets需要获取的数据区间。这样你就知道你要计算多少条数据了。

val untilOffsets = clamp(latestLeaderOffsets(maxRetries))

//创建RDD实例,所以这里DirectKafkaInputDStream和RDD是一一对应的。

  val rdd = KafkaRDD[K, V, U, T, R](

    context.sparkContext, kafkaParams, currentOffsets, untilOffsets, messageHandler)

 

  // Report the record number and metadata of this batch interval to InputInfoTracker.

  val offsetRanges = currentOffsets.map { case (tp, fo) =>

    val uo = untilOffsets(tp)

    OffsetRange(tp.topic, tp.partition, fo, uo.offset)

  }

  val description = offsetRanges.filter { offsetRange =>

    // Don't display empty ranges.

    offsetRange.fromOffset != offsetRange.untilOffset

  }.map { offsetRange =>

    s"topic: ${offsetRange.topic}\tpartition: ${offsetRange.partition}\t" +

      s"offsets: ${offsetRange.fromOffset} to ${offsetRange.untilOffset}"

  }.mkString("\n")

  // Copy offsetRanges to immutable.List to prevent from being modified by the user

  val metadata = Map(

    "offsets" -> offsetRanges.toList,

    StreamInputInfo.METADATA_KEY_DESCRIPTION -> description)

  val inputInfo = StreamInputInfo(id, rdd.count, metadata)

  ssc.scheduler.inputInfoTracker.reportInfo(validTime, inputInfo)

 

  currentOffsets = untilOffsets.map(kv => kv._1 -> kv._2.offset)

  Some(rdd)

}

总体流程如下:


采用Direct的好处?
1. Direct方式没有数据缓存,因此不会出现内存溢出。但是如果采用的Receiver的话就需要缓存。
2. 如果采用Receiver的方式的华,不方便做分布式,而Direct方式默认数据就在多台机器上。
3. 在实际操作的时候如果采用Receiver的方式的弊端是假设数据来不及处理,但是Direct就不会,因为是直接读取数据。
4. 语义一致性,Direct的方式数据一定会被执行。


  • 资料来源于:DT_大数据梦工厂(Spark发行版本定制

  • DT大数据梦工厂微信公众号:DT_Spark 

  • 新浪微博:http://www.weibo.com/ilovepains

  • 王家林老师每晚20:00免费大数据实战

YY直播:68917580



 

第15课:Spark Streaming源码解读之No Receivers彻底思考

receive和no receiver的方式(derict的方式) 封装器一定是RDD类型的KafkaRDD,是为不同的数据来源推出不同的RDD foreachRDD中就可以获得当前batch d...

Spark定制班第15课:Spark Streaming源码解读之No Receivers彻底思考

前面的课程中主要是针对ReceiverInputDStream开展的剖析。   企业级Spark Streaming应用程序开发中在越来越多的采用No Receivers的方式。No Receiver...

15. Spark Streaming源码解读之No Receivers彻底思考

一、官方文档翻译Streaming从Kafka中接收数据,有两种方式:1). 使用Receivers和Kafka高层次的API;2). 基于Direct API(Spark 1.3开始引入的。这两种方...

15、Spark Streaming源码解读之No Receivers彻底思考

在前几期文章里讲了带Receiver的Spark Streaming 应用的相关源码解读,但是现在开发Spark Streaming的应用越来越多的采用No Receivers(Direct Ap...

Spark 定制版:015~Spark Streaming源码解读之No Receivers彻底思考

本讲内容:a. Direct Acess b. Kafka注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解。上节回顾上一讲中,我们讲Spark Stream...

第10课:Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

1。数据接收架构设计模式 2。数据接收源码彻底研究sparkstreaming接收数据的特征: 第一个特征:不断地持续地接收数据; 第二个特征:一般receiver和driver不再同一个进程中...

第8课:Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考

本期内容 1. DStream与RDD关系彻底研究 2. Streaming中RDD的生成彻底研究

第9课:Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

第9课:Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考 /* 王家林老师授课http://weibo.com/ilovepains  每天晚...

第8课:Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考

第8课:Spark Streaming源码解读之RDD生成全生命周期彻底研究和思考 /* 王家林老师授课http://weibo.com/ilovepains  每天晚上20:00YY频道现场授课频...

第10课:Spark Streaming源码解读之流数据不断接收全生命周期彻底研究和思考

写个大数据应用程序而言性能最重要,架构设计和稳定性   源码 ReceiverTracker.scala start /** Start the endpoint and receiver ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:第15课:Spark Streaming源码解读之No Receivers彻底思考
举报原因:
原因补充:

(最多只允许输入30个字)