实变函数(周民强先生)的笔记-引言

原创 2005年05月16日 20:23:00

引言

本书的引言部分介绍了Riemann积分存在的一些缺陷,主要集中在以下几个方面:

(1)可积函数要求比较高(几乎处处连续),使用上不方便

(2)极限和积分次序交换问题

(3)关于微积分基本定理

(4)Riemann可积函数构成的空间是不完备的

最后简单说明了Lebesgue积分的思想.

对于函数f(x)来说,我们有定义域X和值域Y,在微积分课程中X通常是闭区间,Riemann积分是把定义域X划分成小区间,在各个小区间中把函数的值取为常数,然后令小区间长度趋于0来定义的,而Lebesgue积分是把值域Y划分成小区间,通过这些y值可以得到对应的定义域的集合Ei,在这些Ei中把函数的值取为常数,然后令值域中的这些小区间长度趋于0来定义的.

这是我的第一篇Blog文章,最近在看周民强先生的<实变函数>,这将是我的笔记,希望能够督促自己看完这本书

实变函数(周民强先生)的笔记-引言

引言本书的引言部分介绍了Riemann积分存在的一些缺陷,主要集中在以下几个方面:(1)可积函数要求比较高(几乎处处连续),使用上不方便(2)极限和积分次序交换问题(3)关于微积分基本定理(4)Rie...
  • yu0618
  • yu0618
  • 2005年05月16日 20:23
  • 1466

偏微分方程笔记

机理分析中的:微分方程模型,常微分方程的数值解,差分方程模型,稳定状态模型, 马氏链,偏微分方程的数值解,   微分方程模型 1. 基本步骤: 1. 根据实际要求确定要研究的量(自变量、未知...
  • qq_39322798
  • qq_39322798
  • 2017年06月27日 12:22
  • 200

实变函数论知识点总结

我一直想就我个人的体会和认识写个大学本科阶段各分析课程的历史, 知识总结以及有关数学家的八卦故事等. 等我有时间了,  再考虑吧.   下面就简单的总结一些实变函数论课程的知识点, 当然也是重点和考...
  • qq_39322798
  • qq_39322798
  • 2017年06月27日 12:19
  • 449

实变函数/实分析总结

实变函数、实分析,整本书满满的证明就讲了一个勒贝格积分。 最为大家所熟知的是用牛顿-莱布尼茨公式算的黎曼积分。但是黎曼积分本身依赖于函数的连续性,像不连续的狄利克雷函数就无法积分了。 为了解决这一...
  • k331922164
  • k331922164
  • 2016年10月17日 22:11
  • 3183

算法笔记

从今往后,我会在业余时间更新算法学习的笔记(同时也是后续出版教材的重要依据),该笔记比较多,遵循循序渐进的原则,以下是主要目录: 初级算法笔记包括两部分:第一数学基础,第二算法基础入门。 数学基础...
  • kang8866nan
  • kang8866nan
  • 2018年01月05日 22:37
  • 21

泛函分析学习心得

泛函分析学习心得          学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心...
  • qq_39322798
  • qq_39322798
  • 2017年06月27日 12:25
  • 326

【实变函数】点集(1)

所谓点,就是一个n维的一个实数向量。所谓点集,就是一个实数向量的集合。一般用大写字母表示点集,用小写或者希腊字母表示点。点集中的点和集:1、内点,内点集:给定一个集合,如果说x是他的内点,那么x存在一...
  • bendanban
  • bendanban
  • 2015年01月31日 16:21
  • 1541

实变函数与泛函分析

非刷题不足以言学习。 课程:PKU数学双学位——实变函数与泛函分析 授课: 教材:郭懋正《实变函数与泛函分析》 双学位的课面向非数学系的其他院系学生,总体要求较数学科学学院低。...
  • u013795675
  • u013795675
  • 2015年03月18日 15:07
  • 2462

泛函分析一些笔记

这是15年秋学习泛函分析过程中采集到的一些资料,列在这儿,便于以后学习并整理变分法 速降线与短程线 《数学模型》section 13.1。 复活节闲扯:一场激动人心的数学公开挑战赛 http://...
  • u012176591
  • u012176591
  • 2016年04月18日 16:07
  • 1616

泛函分析一些笔记

这是15年秋学习泛函分析过程中采集到的一些资料,列在这儿,便于以后学习并整理变分法 速降线与短程线 《数学模型》section 13.1。 复活节闲扯:一场激动人心的数学公开挑战赛 http://...
  • u012176591
  • u012176591
  • 2016年04月18日 16:07
  • 1616
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:实变函数(周民强先生)的笔记-引言
举报原因:
原因补充:

(最多只允许输入30个字)