实变函数(周民强先生)的笔记-引言

原创 2005年05月16日 20:23:00

引言

本书的引言部分介绍了Riemann积分存在的一些缺陷,主要集中在以下几个方面:

(1)可积函数要求比较高(几乎处处连续),使用上不方便

(2)极限和积分次序交换问题

(3)关于微积分基本定理

(4)Riemann可积函数构成的空间是不完备的

最后简单说明了Lebesgue积分的思想.

对于函数f(x)来说,我们有定义域X和值域Y,在微积分课程中X通常是闭区间,Riemann积分是把定义域X划分成小区间,在各个小区间中把函数的值取为常数,然后令小区间长度趋于0来定义的,而Lebesgue积分是把值域Y划分成小区间,通过这些y值可以得到对应的定义域的集合Ei,在这些Ei中把函数的值取为常数,然后令值域中的这些小区间长度趋于0来定义的.

这是我的第一篇Blog文章,最近在看周民强先生的<实变函数>,这将是我的笔记,希望能够督促自己看完这本书

实变函数论(第2版)周民强.pdf

  • 2016年11月27日 23:34
  • 16.34MB
  • 下载

实变函数周民强版答案

  • 2010年07月16日 22:29
  • 1.72MB
  • 下载

在类的成员函数中调用delete this(转载从东郭先生)

在类的成员函数中调用delete this  (2012-05-07 20:25:29) 转载▼ 标签:  c   delete   this  ...

实变函数(第二版)(周民强)

  • 2011年12月03日 23:18
  • 6.73MB
  • 下载

最大熵学习笔记(零)目录和引言

最大熵

[自学笔记]Tom Mitchell《机器学习》 - 第1章 引言

第一章部分。主要介绍了机器学习的一般方法论和主流观点。

最大熵学习笔记(零)目录和引言

生活中我们经常听到人们说“不要把鸡蛋放到一个篮子里”,这样可以降低风险。深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle)。本文为...
  • peghoty
  • peghoty
  • 2014年05月22日 08:26
  • 7556

JAVA学习笔记1——引言+数值类型

最近在看JAVA教学的视频,觉得老师讲的很好,同时借用源代码还有笔记来撰写本系列博客,记录自己的学习内容,同时也供看到的人学习。 这是第一篇,像大多数JAVA教学所讲的,需要介绍JDK的安装配置还有I...

深度学习《deep learning》学习笔记第一章——引言

深度学习介绍什么是深度学习深度学习(deep learning)是机器学习拉出的分支深度学习是机器学习中一种基于对数据进行表征学习的方法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值...
  • aistock
  • aistock
  • 2017年11月01日 09:21
  • 21

概率图模型-原理与技术 第一章 引言 学习笔记

概率图模型-原理与技术 第一章 引言 学习笔记概率图模型-原理与技术 总目录 http://blog.csdn.net/icefire_tyh/article/details/54026071#t3 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:实变函数(周民强先生)的笔记-引言
举报原因:
原因补充:

(最多只允许输入30个字)