统计学分析公式 MA移动平均线

本文介绍了统计学中的移动平均线分析,包括算术移动平均线、加权移动平均线和指数平滑移动平均线的算法实现,详细探讨了这些平均线在数据分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算术移动平均线

  所谓移动平均,首先是算术平均数,如1到10十个数字,其平均数便是5.5;而移动则意味着这十个数字的变动。假如第一组是1到10,第二组变动成2到11,第三组又变为3到12,那么,这三组平均数各不相同。而这些不同的平均数的集合,便统称为移动平均数
  举例说明:某股连续十个 交易 日收盘价分别为:(单位:元)
  8.15、 8.07、 8.84、 8.10、 8.40、 9.10、 9.20、 9.10、 8.95、 8.70
  以五天 短期均线 为例:
  第五天均值=(8.15+8.07+8.84+8.10+8.40)/5=8.31
  第六天均值=(8.07+8.84+8.10+8.40+9.10)/5=8.50
  第七天均值=(8.84+8.10+8.40+9.10+9.20)/5=8.73
  第八天均值=(8.10+8.40+9.10+9.20+9.10)/5=8.78
指数平滑法的计算中,关键是α的取值大小,但α的取值又容易受主观影响,因此合理确定α的取值方法十分重要,一般来说,如果数据波动较大,α值应取大一些,可以增加近期数据对预测结果的影响。如果数据波动平稳,α值应取小一些。理论界一般认为有以下方法可供选择:    经验判断法。这种方法主要依赖于时间序列的发展趋势和预测者的经验做出判断。   1、当时间序列呈现较稳定的水平趋势时,应选较小的α值,一般可在0.05~0.20之间取值;   2、当时间序列有波动,但长期趋势变化不大时,可选稍大的α值,常在0.1~0.4之间取值;   3、当时间序列波动很大,长期趋势变化幅度较大,呈现明显且迅速的上升或下降趋势时,宜选择较大的α值,如可在0.6~0.8间选值,以使预测模型灵敏度高些,能迅速跟上数据的变化;   4、当时间序列数据是上升(或下降)的发展趋势类型,α应取较大的值,在0.6~1之间。   试算法根据具体时间序列情况,参照经验判断法,来大致确定额定的取值范围,然后取几个α值进行试算,比较不同α值下的预测标准误差,选取预测标准误差最小的α。   在实际应用中预测者应结合对预测对象的变化规律做出定性判断且计算预测误差,并要考虑到预测灵敏度和预测精度是相互矛盾的,必须给予二者一定的考虑,采用折中的α值。 下期预测数=本期实际数×平滑系数+本期预测数×(1-平滑系数) 如某种产品销售量的平滑系数为0.4,1996实际销售量为31万件,预测销售量为33万件。则1997的预测销售量为: 1997预测销售量= 31万件×0.4+33万件×(1-0.4)=32.2万件
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值