hdu5723 最小生成树 树形dp

原创 2016年08月29日 10:46:37

Abandoned country

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 4607    Accepted Submission(s): 1153


Problem Description
An abandoned country has n(n100000) villages which are numbered from 1 to n. Since abandoned for a long time, the roads need to be re-built. There are m(m1000000) roads to be re-built, the length of each road is wi(wi1000000). Guaranteed that any two wi are different. The roads made all the villages connected directly or indirectly before destroyed. Every road will cost the same value of its length to rebuild. The king wants to use the minimum cost to make all the villages connected with each other directly or indirectly. After the roads are re-built, the king asks a men as messenger. The king will select any two different points as starting point or the destination with the same probability. Now the king asks you to tell him the minimum cost and the minimum expectations length the messenger will walk.
 

Input
The first line contains an integer T(T10) which indicates the number of test cases. 

For each test case, the first line contains two integers n,m indicate the number of villages and the number of roads to be re-built. Next m lines, each line have three number i,j,wi, the length of a road connecting the village i and the village j is wi.
 

Output
output the minimum cost and minimum Expectations with two decimal places. They separated by a space.
 

Sample Input
1 4 6 1 2 1 2 3 2 3 4 3 4 1 4 1 3 5 2 4 6
 

Sample Output
6 3.33
 

Author
HIT

题意:国王有n个城市,计划修建一些路要把所有的城市连接起来,他有一些方案,让我们计算最小花费的方案
,而后,在最小花费的方案上计算一个期望,啥子期望腻,就是国王要随机选择两个城市,问这两个城市之间距离的期望,既任意两个城市都有可能被选择到,那么期望等于所有路程和/路径个数,最小花费方案不用说肯定是最小生成树了,既然是最小生成树,那么路径个数= n*(n-1)/2,路程长度咋求啊,不能把所有路径都求出来加和啊,那么我们想到,可以算每条路用的次数,我们发现,一条路用的次数等于这条路两侧城市个数之积;
那么,我们就可以用一遍深搜,求出每个节点的孩子个数,那么一条边 u-->v    u,v一个是孩子,一个是父亲
父亲的孩子比孩子的孩子多,所以用孩子的孩子个数计算,那么这条边的利用次数:  tp=min(child[u],child[v])
次数 = (n-tp)*tp 


#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
#include <vector>
#include <queue>
const int maxm=1000000+1000,maxn=100000+100;
using namespace std;
struct node
{
    int x,y;
    long long num;
}d[maxm];
bool cmp(node a,node b)
{
    return a.num<b.num;
}
int par[maxn];
int rank2[maxn];
void init1(int n)
{
    for(int i=0;i<=n;i++)
    {
        par[i]=i;
        rank2[i]=0;
    }
}
int find_(int x)
{
    if(par[x]==x)
        return x;
    else
    {
      return par[x]=find_(par[x]);
    }
}
void add(int x,int y)
{
    x=find_(x);
    y=find_(y);
    if(x==y)
    {
        return;
    }
    if(rank2[x]<rank2[y])
    {
        par[x]=y;
    }
    else{
        par[y]=x;
        if(rank2[x]==rank2[y])
            rank2[x]++;
    }
}

struct Edge
{
    int v;
    long long w;
    Edge(){;}
    Edge(int vv,long long ww)
    {
      v=vv;
      w=ww;
    }
};
int leaf[maxn];
vector<Edge>G[maxm];
void init2(int n)
{
   for(int i=0;i<=n;i++)
   {
        G[i].clear();
        leaf[i]=1;
   }
}
void add_edge(int u,int v,long long w)
{
    G[u].push_back(Edge(v,w));
    G[v].push_back(Edge(u,w));
}
void dfs(int u,int pre)
{
    if(G[u].size()==1)
        leaf[u]=1;
    int num=G[u].size();
    for(int i=0;i<num;i++)
    {
        int v=G[u][i].v;
        if(v==pre)
            continue;
        dfs(v,u);
        leaf[u]+=leaf[v];
    }
}
int vis[maxn];
int N;
double bfs(int s)
{
    memset(vis,0,sizeof(vis));
    queue<int>que;
    que.push(s);
    double  ans=0.0,fm,temp;
    fm=1.0*N*(N-1)/2.0;
    //cout<<"fm"<<fm<<endl;
    while(!que.empty())
    {
        int u=que.front();
        que.pop();
        vis[u]=1;
        for(int i=0;i<G[u].size();i++)
        {
            int v=G[u][i].v;
            if(!vis[v])
            {
                que.push(v);
                 temp=1.0*min(leaf[u],leaf[v]);
                ans=ans+(((1.0*N-temp)*temp)*(1.0*G[u][i].w))/fm;
                //cout<<ans<<endl;
            }
        }
    }
    return ans;
}
int main()
{
    int t;
    int n,m;
    long long mintree;
    scanf("%d",&t);
    while(t--)
    {

        scanf("%d%d",&n,&m);
        init2(n);
        init1(n);
        N=n;
        mintree=0;
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&d[i].x,&d[i].y,&d[i].num);
        }
        sort(d,d+m,cmp);
        for(int i=0;i<m;i++)
        {
            if(find_(d[i].x)!=find_(d[i].y))
            {
                add(d[i].x,d[i].y);
                mintree+=d[i].num;
                add_edge(d[i].x,d[i].y,d[i].num);
            }
        }
        dfs(1,1);
        double ans2=bfs(1);
        printf("%lld %.2lf\n",mintree,ans2);
    }
    return 0;
}



 

版权声明:本文为博主原创文章,转载注明出处。

树形 DP 总结

一、介绍 1、什么是树型动态规划  顾名思义,树型动态规划就是在“树”的数据结构上的动态规划,平时作的动态规划都是线性的或者是建立在图上的,线性的动态规划有二种方向既向前和向后,相应的线性的动态规划有...
  • AngOn823
  • AngOn823
  • 2016年08月27日 14:12
  • 1349

树形DP总结,持续更新

树形DP总结,持续更新
  • Dacc123
  • Dacc123
  • 2016年01月03日 18:09
  • 368

动态规划-树形dp总结

一.简单的从下到上和从上到下的统计 1.      dp[u]表示以u为根的一共有多少个节点.可以用来求重心. 2.      每个点出发能够走得最远的长度.dpm[u], dps[u]用来保存u...
  • u013625492
  • u013625492
  • 2015年06月17日 17:02
  • 1335

【DP_树形DP专辑】【9月9最新更新】【from zeroclock's blog】

树,一种十分优美的数据结构,因为它本身就具有的递归性,所以它和子树见能相互传递很多信息,还因为它作为被限制的图在上面可进行的操作更多,所以各种用于不同地方的树都出现了,二叉树、三叉树、静态搜索树、AV...
  • liuqiyao_01
  • liuqiyao_01
  • 2013年01月07日 16:47
  • 14994

test 宝藏(树形dp)

题解 :树形dp f[i]表示从i出发只能向下走最终回到i的最大值,f1[i]表示从i出发只能向下走 #include #include #include #include #include #def...
  • clover_hxy
  • clover_hxy
  • 2016年11月15日 08:23
  • 133

51nod 1737 配对 【树形dp】

题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1737题意:给出一棵n个点的树,将这n个点两两配对,求所有可行的方案...
  • hjt_fathomless
  • hjt_fathomless
  • 2017年02月20日 16:31
  • 206

51nod 苹果曼和树 (树形dp)

汉语题: 苹果曼有一棵n个点的树。有一些(至少一个)结点被标记为黑色,有一些结点被标 记为白色。 现在考虑一个包含k(0 ≤ k < n)条树边的集合。如果苹果曼删除这些边,那么会将这...
  • Since_natural_ran
  • Since_natural_ran
  • 2017年04月23日 15:37
  • 298

树形动态规划(树状DP)小结

树状动态规划定义 之所以这样命名树规,是因为树形DP的这一特殊性:没有环,dfs是不会重复,而且具有明显而又严格的层数关系。利用这一特性,我们可以很清晰地根据题目写出一个在树(型结构)上的记忆化搜索...
  • txl16211
  • txl16211
  • 2015年04月29日 23:10
  • 9257

poj 1848 Tree(树形DP,太难了,三种状态,四种状态转换)

1、http://poj.org/problem?id=1848 2、题目大意: 给出一棵树,现在要往这棵树上加边,使得所有的点都在环中,且每个点只能属于一个环 分析:参考http://hi.b...
  • sdjzping
  • sdjzping
  • 2014年01月21日 17:28
  • 1224

【NOIP 模拟题】[T2]宝藏(树形dp)

饮月千尺,寂夜成相思
  • reverie_mjp
  • reverie_mjp
  • 2016年11月14日 20:45
  • 259
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:hdu5723 最小生成树 树形dp
举报原因:
原因补充:

(最多只允许输入30个字)