[数据结构]10.4实现avl Tree的插入和删除操作。

原创 2016年06月01日 19:15:07
//**********************************************************插入函数****************************************************

template<class Record>
Error_code AVL_tree<Record>::insert(const Record & new_data)
{
	bool taller;
	return avl_insert(root, new_data, taller);
}

template<class Record>
Error_code AVL_tree<Record>::avl_insert(Binary_node<Record>*& sub_root, const Record & new_data, bool & taller)
{
	if (sub_root == NULL) {
		sub_root = new AVL_node<Record>(new_data);
		taller = true;
		return success;
	}
	else if (sub_root->data == new_data) {
		taller = false;
		return duplicate_error;
	}
	else if (sub_root->data > new_data) {
		Error_code result = avl_insert(sub_root->left_child, new_data, taller);
		if (taller == true) {
			switch (sub_root->get_balance())
			{
			case left_higher:
				left_balance(sub_root);
				taller = false;
				break;
			case equal_height:
				sub_root->set_balance(left_higher);
				break;
			case right_higher:
				sub_root->set_balance(equal_height);
				taller = false;
				break;
			}
		}
		return result;
	}
	else {
		Error_code result = avl_insert(sub_root->right_child, new_data, taller);
		if (taller == true) {
			switch (sub_root->get_balance())
			{
			case left_higher:
				sub_root->set_balance(equal_height);
				taller = false;
				break;
			case equal_height:
				sub_root->set_balance(right_higher);
				break;
			case right_higher:
				right_balance(sub_root);
				taller = false;
				break;
			}
		}
		return result;
	}
}


//*******************************************************************删除函数********************************************************
template<class Record>
Error_code AVL_tree<Record>::remove(Record & old_data)
{
	bool shorter = true;
	return avl_remove(root, old_data, shorter);
}

template<class Record>
Error_code AVL_tree<Record>::avl_remove(Binary_node<Record>*& sub_root, Record & new_data, bool & shorter)
{
	Error_code result;
	if (sub_root == NULL) {
		shorter = false;
		return not_present;
	}
	else if (new_data == sub_root->data) {
		Binary_node<Record>*to_delete = sub_root;
		if (sub_root->right_child == NULL) {
			sub_root = sub_root->left_child;
			shorter = true;
			delete to_delete;
			return success;
		}
		else if (sub_root->left_child == NULL) {
			sub_root = sub_root->right_child;
			shorter = true;
			delete to_delete;
			return success;
		}
		else {
			to_delete = sub_root->left_child;
			Binary_node<Record> *parent = sub_root;
			while (!to_delete->right_child) {
				parent = to_delete;
				to_delete = to_delete->left_child;
			}
			sub_root->data = to_delete->data;
			new_data = to_delete->data; 
			delete to_delete;
		}
	}
	if (new_data < sub_root->data) {
		result = avl_remove(sub_root->left_child, new_data, shorter);
		if (shorter == true) {
			switch (sub_root->get_balance())
			{
			case left_higher:
				sub_root->set_balance(equal_height);
				break;
			case equal_height:
				sub_root->set_balance(right_higher);
				break;
			case right_higher:
				shorter = right_balance2(sub_root);
				break;
			}
		}
	}
	if (new_data > sub_root->data) {
		result = avl_remove(sub_root->right_child, new_data, shorter);
		if (shorter == true) {
			switch (sub_root->get_balance())
			{
			case left_higher:
				shorter=left_balance2(sub_root);
				break;
			case equal_height:
				break;
				sub_root->set_balance(left_higher);
			case right_higher:
				sub_root->set_balance(equal_height);
				break;
			}
		}
	}
	return result;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数据结构-----AVL树的插入删除操作

对于AVL的插入和删除,主要利用的就是上篇文章所述的四种旋转操作,根据插入后不同的结构选用不同的方式复原平衡。 首先对于插入操作,有以下几个步骤: 步骤1:根据二叉树的性质:大的向右找,小的向左找...

【AVL树】AVL树的插入操作以及旋转

在讲解AVL树之前必须了解二叉搜索树, 可以看我之前的博客:二叉搜索树AVL树是在二叉搜索树的基础上,在向二叉树排序树中插入新的结点,如果保证每个结点的左右子树的高度差的绝对值不超过1,即需要在插入...

AVL的构建(插入操作)---《数据结构》严蔚敏

AVL的构建(插入操作)---《数据结构》严蔚敏

[数据结构]10.2实现binary search tree的查找和插入操作,用非递归的方法实现

//*****************************************************insert循环版************************************...

数据结构 — AVL tree(平衡二叉树)

# BST(二叉搜索树、二叉查找树、二叉排序树) 定义: 1、要么是一棵空树 2、如果不为空,那么其左子树节点的值都小于根节点的值;右子树节点的值都大于根节点的值 3、其左右子树也是二...

数据结构-平衡二叉树(AVL Tree)

在 数据结构-二叉树(binary tree)-二叉查找树(binary search tree) 的最后面,提到过在二叉树中增加或者删除节点,可能导致树的左右子树高度相差很多,即导致树不平衡。为了解...

PAT 数据结构 04-树4. Root of AVL Tree (25)

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child sub...

数据结构--树论--平衡二叉树(AVL TREE)

介绍 我们知道在二叉查找树中,如果插入元素的顺序接近有序,那么二叉查找树将退化为链表,从而导致二叉查找树的查找效率大为降低。如何使得二叉查找树无论在什么样情况下都能使它的形态最大限度地接近满二叉树以...

中国大学MOOC-陈越、何钦铭-数据结构 Root of AVL Tree

题目: An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two chil...

【数据结构】算法10.4-10.5 插入排序-希尔

#include #include #include#define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEAS...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[数据结构]10.4实现avl Tree的插入和删除操作。
举报原因:
原因补充:

(最多只允许输入30个字)