辗转相除法Euclid(欧几里德)

转载 2012年03月22日 20:16:03

基本算法——辗转相除法

问题:输出两个正整数a,b,0<a<b, 输出其最大公约数p和最小公倍数q

解法1——

pa开始,检测p是否能同时整除ab, 是则停止循环,不是则令p1,继续检测。

qb开始,检测q是否能同时被ab整除,是则停止循环,不是则令q1,继续检测。

源程序1

#include <stdio.h> 
void main() 

  int a,b, p, q
  do{

printf("请输入ab:\n");   scanf("%d%d",&a,&b); 

} while ( a<0 || b<0 || a>b); 

p=a;

while( a%p!=0 || b%p!=0) p--;

printf("这两个数的最大公约数是%d\n",p); 

q=b;

while( q%a!=0 || q%b!=0) q++;

printf("这两个数的最小公倍数是%d\n",q); 
}

改进——已知整数a,b及其最大公约数p,则直接可推算出最小公倍数q

q= a*b/p;

源程序2

#include <stdio.h> 
void main() 

  int a,b, p, q
  do{

printf("请输入ab:\n");   scanf("%d%d",&a,&b); 

} while ( a<0 || b<0 || a>b); 

p=a;

while( a%p!=0 || b%p!=0) p--;

printf("这两个数的最大公约数是%d\n",p); 

q= a*b/p;

printf("这两个数的最小公倍数是%d\n",q); 
}

解法1的缺点:效率低。

例如a=1397, b=2413,其最大公约数p=127,为得到p,共循环了1397-127+1=1171次。

如何提高效率?

解法2——辗转相除法,在西方称为Euclid(欧几里)算法。

计算(13972413的最大公约数为例:

以大数2413为被除数,以小数1397为除数相除商为1余数为1016

以除数1397为被除数余数1016,相除得:  商为1余数为381

以除数1016为被除数,以余数381为除数, 相除得:   商为2余数为254

以除数381为被除数,以余数254为除数,  相除:  商为余数为127

以除数254为被除数以余数127为除数,相除得:  商为2余数为

~~发现能整除127就是最大公约数。整个计算过程为: 

被除数b

除数a

s

余数r

2413

1397

1

1016

1397

1016

1

381

1061

381

2

254

381

254

1

127

254

127

2

0

数学证明:  b=as+r (0≤r ≤b-1),且a,b的最大公约数用符号a,b代表 

r=0,显然(a,b=a; 

r≠0, 由于b=as+r,每个能整除a,r的整数都能整除bà能同时整除a,b, 故有

(a,r) | (a,b)

另一方面,r=b-aq 每个能整除a,b的整数都能整除r à能同时整除a,r, 故有

(a,b) | (a,r) 

因此a,b=(a,r)

辗转相除法程序
#include <stdio.h> 
void main() 

int a,b,r, m
do{

printf("请输入ab:\n"); 
scanf("%d%d",&a,&b); 
}while( a<0 || b<0 ||a>b);

m=a*b; 

do
 r=b%a
 b=a;

a=r;  

}while(r!=0);  

printf("这两个数的最大公约数是%d\n",r); 

printf("这两个数的最小公倍数是%d\n", m/r);  //不能写“a*b/r

} ==========================================================================

#include <stdio.h>
int gac(int a,int b);
void main()
{
 int a,b,temp;
 printf("请输入两个整数:\n");
 scanf("%d%d",&a,&b);
 temp=gac(a,b);
 printf("最大公约数为:%d\n",temp);
}
int gac(int a,int b){
 if(a<b)
  return gac(b,a);
 if(a%b!=0)
  gac(b,a%b);
 else
  return b;
}

==============================================================================================================================

输入有多组测试案例。
每个测试案例为1行,全由小写英文字母组成,长度不超过100,000。

输出:

对应每个测试案例,输出最大压缩串,单独占1行。

样例输入:
aaaa
xyz
abababab
abcabcabdabd
样例输出:
a4
xyz1
ab4
abcabcabdabd1
提示:
案例4中,答案不是abc2abd2,因为描述中提过压缩串仅是将原始串完全恰好的分割为一个字符串和数字的形式,因此只能为abcabcabdabd1

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define STRING_LENGTH 100001
int gcd(int a,int b){
    int r;
    while( (r=a%b)!=0){
  a=b;
  b=r;
    }
    return b;
}
int recur(char *sz,int n){
    int len,i;
    len=strlen(sz);
    if(len%n!=0)return 0;
    for(i=n;i<len;i+=n)
  if(strncmp(sz,sz+i,n)!=0)
   return 0;
  return 1;
}

char sz[STRING_LENGTH];
int cnt[26];
int main(){
    int len,i,d,n;
 while(gets(sz)){
  len=strlen(sz);
  memset(cnt,0,sizeof(cnt));
  
  for(i=0;i<len;i++)cnt[sz[i]-'a']++;
  
  i=0;
  while(i<26&&cnt[i]==0)i++;
  d=cnt[i];
  while(i<26)d=gcd(cnt[i++],d);
  
  for(n=len/d;n<=len/2;n+=len/d)
   if(len%n==0&&recur(sz,n)==1)break;
   if(n>len/2)n=len;
   
   sz[n]='\0';
   printf("%s%d\n",sz,len/n);
    }
    return 0;
}

 

 


 

相关文章推荐

两个数的最大公约数------欧几里德算法(辗转相除法)

计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) (a>b 且a mod b 不为0) 算法步骤: 1:r = mod(a,b) 2:a = b; 3:b = r;...

数论 辗转相除法 扩展欧几里德算法 素数 快速幂

一.辗转相除法 int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); }
  • wcc526
  • wcc526
  • 2013-11-03 20:00
  • 1565

UVa Problem 10104 Euclid Problem (欧几里德问题)

// Euclid Problem (欧几里德问题)// PC/UVa IDs: 110703/10104, Popularity: A, Success rate: average Level: 1...

欧几里得算法(即辗转相除法)的时间复杂度

欧几里得算法(即辗转相除法)的时间复杂度 本文是参考新浪博客而写。 欧几里得算法, 又称辗转相除法, 用于求两个自然数的最大公约数. 算法的思想很简单, 基于下面的数论等式 ...

欧几里得算法(辗转相除法)证明过程

今天在读Aditya Bhargava著的《算法图解》的时候,发现了第41页的农场主分地的题目需要一个知识——欧几里得算法,还真是第一次看到实际应用。然后就参照百度的证明学习一下如何证明欧几里得算法。...

辗转相除法(欧几里得算法)

1.普通辗转相除法求最大公约数 int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); } 2.扩展欧几里得算法 求整数...

趣味分数-辗转相除 (欧几里德算法) 递归算法 求最大公约数-java

问题描述: 求任意两个数的最大公约数。 public class Main { public static void main(String[]Args){ System.out.p...

状态转移思想解读:辗转相除(欧几里德)算法及扩展

欧几里德算法,也被称为辗转相除法,其被用于求解两个数之间的最大公约数,它的算法实现十分容易,但是其扩展算法的推导,并不那么显然。 相信你的第一感觉是十分简洁,确实也如此,对于一个不懂这两种算法的人,如...

数论基础 辗转相除 扩展欧几里德

数论基础 欧几里得 扩展欧几里得 模运算

除法求逆元(扩展欧几里德和费马小定理)

数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 (・∀・)哼哼~天真 先来引入求余概念 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)