辗转相除法Euclid(欧几里德)

转载 2012年03月22日 20:16:03

基本算法——辗转相除法

问题:输出两个正整数a,b,0<a<b, 输出其最大公约数p和最小公倍数q

解法1——

pa开始,检测p是否能同时整除ab, 是则停止循环,不是则令p1,继续检测。

qb开始,检测q是否能同时被ab整除,是则停止循环,不是则令q1,继续检测。

源程序1

#include <stdio.h> 
void main() 

  int a,b, p, q
  do{

printf("请输入ab:\n");   scanf("%d%d",&a,&b); 

} while ( a<0 || b<0 || a>b); 

p=a;

while( a%p!=0 || b%p!=0) p--;

printf("这两个数的最大公约数是%d\n",p); 

q=b;

while( q%a!=0 || q%b!=0) q++;

printf("这两个数的最小公倍数是%d\n",q); 
}

改进——已知整数a,b及其最大公约数p,则直接可推算出最小公倍数q

q= a*b/p;

源程序2

#include <stdio.h> 
void main() 

  int a,b, p, q
  do{

printf("请输入ab:\n");   scanf("%d%d",&a,&b); 

} while ( a<0 || b<0 || a>b); 

p=a;

while( a%p!=0 || b%p!=0) p--;

printf("这两个数的最大公约数是%d\n",p); 

q= a*b/p;

printf("这两个数的最小公倍数是%d\n",q); 
}

解法1的缺点:效率低。

例如a=1397, b=2413,其最大公约数p=127,为得到p,共循环了1397-127+1=1171次。

如何提高效率?

解法2——辗转相除法,在西方称为Euclid(欧几里)算法。

计算(13972413的最大公约数为例:

以大数2413为被除数,以小数1397为除数相除商为1余数为1016

以除数1397为被除数余数1016,相除得:  商为1余数为381

以除数1016为被除数,以余数381为除数, 相除得:   商为2余数为254

以除数381为被除数,以余数254为除数,  相除:  商为余数为127

以除数254为被除数以余数127为除数,相除得:  商为2余数为

~~发现能整除127就是最大公约数。整个计算过程为: 

被除数b

除数a

s

余数r

2413

1397

1

1016

1397

1016

1

381

1061

381

2

254

381

254

1

127

254

127

2

0

数学证明:  b=as+r (0≤r ≤b-1),且a,b的最大公约数用符号a,b代表 

r=0,显然(a,b=a; 

r≠0, 由于b=as+r,每个能整除a,r的整数都能整除bà能同时整除a,b, 故有

(a,r) | (a,b)

另一方面,r=b-aq 每个能整除a,b的整数都能整除r à能同时整除a,r, 故有

(a,b) | (a,r) 

因此a,b=(a,r)

辗转相除法程序
#include <stdio.h> 
void main() 

int a,b,r, m
do{

printf("请输入ab:\n"); 
scanf("%d%d",&a,&b); 
}while( a<0 || b<0 ||a>b);

m=a*b; 

do
 r=b%a
 b=a;

a=r;  

}while(r!=0);  

printf("这两个数的最大公约数是%d\n",r); 

printf("这两个数的最小公倍数是%d\n", m/r);  //不能写“a*b/r

} ==========================================================================

#include <stdio.h>
int gac(int a,int b);
void main()
{
 int a,b,temp;
 printf("请输入两个整数:\n");
 scanf("%d%d",&a,&b);
 temp=gac(a,b);
 printf("最大公约数为:%d\n",temp);
}
int gac(int a,int b){
 if(a<b)
  return gac(b,a);
 if(a%b!=0)
  gac(b,a%b);
 else
  return b;
}

==============================================================================================================================

输入有多组测试案例。
每个测试案例为1行,全由小写英文字母组成,长度不超过100,000。

输出:

对应每个测试案例,输出最大压缩串,单独占1行。

样例输入:
aaaa
xyz
abababab
abcabcabdabd
样例输出:
a4
xyz1
ab4
abcabcabdabd1
提示:
案例4中,答案不是abc2abd2,因为描述中提过压缩串仅是将原始串完全恰好的分割为一个字符串和数字的形式,因此只能为abcabcabdabd1

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define STRING_LENGTH 100001
int gcd(int a,int b){
    int r;
    while( (r=a%b)!=0){
  a=b;
  b=r;
    }
    return b;
}
int recur(char *sz,int n){
    int len,i;
    len=strlen(sz);
    if(len%n!=0)return 0;
    for(i=n;i<len;i+=n)
  if(strncmp(sz,sz+i,n)!=0)
   return 0;
  return 1;
}

char sz[STRING_LENGTH];
int cnt[26];
int main(){
    int len,i,d,n;
 while(gets(sz)){
  len=strlen(sz);
  memset(cnt,0,sizeof(cnt));
  
  for(i=0;i<len;i++)cnt[sz[i]-'a']++;
  
  i=0;
  while(i<26&&cnt[i]==0)i++;
  d=cnt[i];
  while(i<26)d=gcd(cnt[i++],d);
  
  for(n=len/d;n<=len/2;n+=len/d)
   if(len%n==0&&recur(sz,n)==1)break;
   if(n>len/2)n=len;
   
   sz[n]='\0';
   printf("%s%d\n",sz,len/n);
    }
    return 0;
}

 

 


 

两个数的最大公约数------欧几里德算法(辗转相除法)

计算原理依赖于下面的定理: 定理:gcd(a,b) = gcd(b,a mod b) (a>b 且a mod b 不为0) 算法步骤: 1:r = mod(a,b) 2:a = b; 3:b = r;...

数论 辗转相除法 扩展欧几里德算法 素数 快速幂

一.辗转相除法 int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); }
  • wcc526
  • wcc526
  • 2013年11月03日 20:00
  • 1641

辗转相除法(欧几里德算法)

这个算法可以用来求解两个非负整数 a,ba,b 的最大公因数 \gcd\left({a,b}\right)gcd(a,b)。算法的步骤如下: 若 b=0b=0,则最大公因数是 aa;否则,最大公...

求最大公因子(辗转相除法原理)(扩展的欧几里德算法)

while(n != 0) { r = m % n; m = n; n = r; } printf("Their greates...

辗转相除法(欧几里德算法)原理

原理: 假设有两个数x和y,存在一个最大公约数z=(x,y),即x和y都有公因数z, 那么x一定能被z整除,y也一定能被z整除,所以x和y的线性组合mx±ny也一定能被z整除。(m和n可取任意整数...

UVa Problem 10104 Euclid Problem (欧几里德问题)

// Euclid Problem (欧几里德问题)// PC/UVa IDs: 110703/10104, Popularity: A, Success rate: average Level: 1...

有关欧几里德(Euclid)几何原本的感想

       在公元前,欧几里德“几何原本”出现了,标志着数学公理化进程的开端。实际上,几何原本的内容包括了现代的代数与数论,只不过用几何语言表述罢了。可以说,数学公理化的历史进程十分...

uva 10104 Euclid Problem (数论-扩展欧几里德)

uva 10104 Euclid Problem (数论-扩展欧几里德) 题目大意: 已知 A 和 B , 问你 A*X+B*Y=GCD(A,B)的 X,Y解。 解题思路: 非常裸的拓展欧几里德算...

欧几里得算法(即辗转相除法)的时间复杂度

欧几里得算法(即辗转相除法)的时间复杂度 本文是参考新浪博客而写。 欧几里得算法, 又称辗转相除法, 用于求两个自然数的最大公约数. 算法的思想很简单, 基于下面的数论等式 ...

欧几里得算法(辗转相除法)求最大公约数

之前在高等代数(也可能你们学的线性代数)中有讲到多项式求最大公因式的方法——辗转相除法,当时没仔细研究,后来细想发现这个方法是可以用计算机实现的,今天看资料的时候有看到欧几里得算法,正式求最大公因数的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:辗转相除法Euclid(欧几里德)
举报原因:
原因补充:

(最多只允许输入30个字)