优化hibernate性能的几点建议
1、针对oracle数据库而言,Fetch Size 是设定JDBC的Statement读取数据的时候每次从数据库中取出的记录条数,一般设置为30、50、100。Oracle数据库的JDBC驱动默认的Fetch Size=15,设置Fetch Size设置为:30、50,性能会有明显提升,如果继续增大,超出100,性能提升不明显,反而会消耗内存。
即在hibernate配制文件中进行配制:
1 <property name="hibernateProperties"> 2 <props> 3 <prop key="hibernate.dialect">org.hibernate.dialect.Oracle9Dialect</prop> 4 <prop key="hibernate.show_sql">false</prop> 5 <!-- Create/update the database tables automatically when the JVM starts up 6 <prop key="hibernate.hbm2ddl.auto">update</prop> --> 7 <!-- Turn batching off for better error messages under PostgreSQL 8 <prop key="hibernate.jdbc.fetch_size">100</prop> --> 9 <prop key="hibernate.jdbc.batch_size">50</prop> 10 </props> 11 </property>Fetch Size设的越大,读数据库的次数越少,速度越快;Fetch Size越小,读数据库的次数越多,速度越慢。 |
hibernate.jdbc.fetch_size 意义解释:
Statement.setFetchSize()
).
- /**
- * Gives the JDBC driver a hint as to the number of rows that should
- * be fetched from the database when more rows are needed. The number
- * of rows specified affects only result sets created using this
- * statement. If the value specified is zero, then the hint is ignored.
- * The default value is zero.
- *
- * @param rows the number of rows to fetch
- * @exception SQLException if a database access error occurs, or the
- * condition 0 <= <code>rows</code> <= <code>this.getMaxRows()</code>
- * is not satisfied.
- * @since 1.2
- * @see #getFetchSize
- */
hibernate.jdbc.batch_size:
非零值,允许Hibernate使用JDBC2的批量更新. 取值 建议取5
到30
之间的值。设定一次最多可以提交多少sql语句的上限,提高sql语句的执行效率 。
数据批量操作时可以通过配置
<session-factory>
...
<property name="hibernate.jdbc.batch_size">50</property>
...
</session.factory>
来指定当我们发起SQL调用的时候累计到50个SQL之后批量提交。
同一个SessionFactory创建出来的一个session,一个进行批量操作,执行了100次SQL语句,对数据库进行了两次操作。
2、如果是超大的系统,建议生成htm文件。加快页面提升速度。
3、不要把所有的责任推在hibernate上,对代码进行重构,减少对数据库的操作,尽量避免在数据库查询时使用in操作,以及避免递归查询操作,代码质量、系统设计的合理性决定系统性能的高低。
4、 对大数据量查询时,慎用list()或者iterator()返回查询结果,
(1). 使用List()返回结果时,Hibernate会所有查询结果初始化为持久化对象,结果集较大时,会占用很多的处理时间。
(2). 而使用iterator()返回结果时,在每次调用iterator.next()返回对象并使用对象时,Hibernate才调用查询将对应的对象初始化,对于大数据量时,每调用一次查询都会花费较多的时间。当结果集较大,但是含有较大量相同的数据,或者结果集不是全部都会使用时,使用iterator()才有优势。
5、在一对多、多对一的关系中,使用延迟加载机制,会使不少的对象在使用时方会初始化,这样可使得节省内存空间以及减少数据库的负荷,而且若PO中的集合没有被使用时,就可减少互数据库的交互从而减少处理时间。
6、对含有关联的PO(持久化对象)时,若default-cascade="all"或者 “save-update”,新增PO时,请注意对PO中的集合的赋值操作,因为有可能使得多执行一次update操作。
7、 对于大数据量新增、修改、删除操作或者是对大数据量的查询,与数据库的交互次数是决定处理时间的最重要因素,减少交互的次数是提升效率的最好途径,所以在开发过程中,请将show_sql设置为true,深入了解Hibernate的处理过程,尝试不同的方式,可以使得效率提升。尽可能对每个页面的显示,对数据库的操作减少到100----150条以内。越少越好。
-------------------------------------------------------------
批量插入
在项目的开发过程之中,由于项目需求,我们常常需要把大批量的数据插入到数据库。数量级有万级、十万级、百万级、甚至千万级别的。如此数量级别的数据用Hibernate做插入操作,就可能会发生异常,常见的异常是OutOfMemoryError(内存溢出异常)。
基本思路:优化Hibernate,在配置文件中设置hibernate.jdbc.batch_size参数,来指定每次提交SQL的数量;程序上采用分段插入及时清除缓存的方法(Session实现了异步write-behind,它允许Hibernate显式地写操作的批处理),也就是每插入一定量的数据后及时的把它们从内部缓存中清除掉,释放占用的内存。
设置hibernate.jdbc.batch_size参数,配置如下。
<hibernate-configuration>
<session-factory>
.........
<property name=” hibernate.jdbc.batch_size”>50</property>
.........
<session-factory>
<hibernate-configuration>
配置hibernate.jdbc.batch_size参数的原因就是尽量少读数据库,hibernate.jdbc.batch_size参数值越大,读数据库的次数越少,速度越快。从上面的配置可以看出,Hibernate是等到程序积累到了50个SQL之后再批量提交。
hibernate.jdbc.batch_size参数值也可能不是设置得越大越好,从性能角度上讲还有待商榷。这要考虑实际情况,酌情设置,一般情形设置30、50就可以满足需求了。
插入10000条数据为例,如下:
Session session=HibernateUtil.currentSession();
Transatcion tx=session.beginTransaction();
for(int i=0;i<100000;i++)
...{
Student s=new Student();
s.setName(“Paul”);
session.save(s);
if(i%50==0) //以每50个数据作为一个处理单元
...{
session.flush(); //保持与数据库数据的同步
session.clear(); //清除内部缓存的全部数据,及时释放出占用的内存
}
}
tx.commit();
.........
在一定的数据规模下,这种做法可以把系统内存资源维持在一个相对稳定的范围。
如果启用了二级缓存,从机制上讲Hibernate为了维护二级缓存,我们在做插入、更新、删除操作时,Hibernate都会往二级缓存充入相应的数据。性能上就会有很大损失,建议在批处理情况下禁用二级缓存。