图像算法中常用的数学概念

1、最大似然法

最大似然估计,就是利用已知的样本结果反推最有可能(最大概率)导致这样结果的参数值(模型已知,参数未知)

2、概率密度函数PDF

概率密度函数定义:当试验次数无限增加,直方图趋近于光滑曲线,曲线下包围的面积表示概率。该曲线称为概率密度函数。

概率密度:一个点的概率。概率分布:一个区域的概率合计。

在图像中,就是归一化直方图。

3、傅里叶变换的理解

参考:(如果看了此文你还不懂傅里叶变换,那就过来掐死我吧【完整版】——http://blog.jobbole.com/70549/)

4、卷积

卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。

参考:(如何通俗易懂地解释卷积?https://www.zhihu.com/question/22298352)

哈达吗(Hadamard)矩阵是由元素为+1和-1构成的且满足Hn*Hn'=nl(这里Hn'为Hn的转置,l为单位方阵)的n阶方阵。

5、哈达玛矩阵

哈达吗(Hadamard)矩阵是由元素为+1和-1构成的且满足Hn*Hn'=nl(这里Hn'为Hn的转置,l为单位方阵)的n阶方阵。
性质1:
Hn为正交方阵,所谓正交矩阵指它的任意两行(或两列)都是正交的。并且行列式为
性质2:任意一行(列)的所有元素的平方和等于方阵的阶数。即:设A为n阶由+1和-1元素构成的方阵,若AA’=nI(这里A’为A的转置,I为单位方阵)。
性质3:Hadamard矩阵的阶数都是2或者是4的倍数。
性质4:若M为n阶实方阵,若M的所有元素的绝对值均小于1,则M的行列式
,当且仅当M为哈达玛矩阵时取等。(此结论由哈达玛不等式得出)。

6、矩阵乘法

(1)matmul product(一般矩阵乘积)

m x p矩阵A与p x n矩阵B,那么称m x n 矩阵C为矩阵A与矩阵B的一般乘积,记作C = AB ,其中矩阵C元素$ [cij]为矩阵A、B对应两两元素之和,表示为:


例子:


(2)Hadamard product(哈达吗积)

m x n矩阵A = [aij]与矩阵$B = [bij]的Hadamard积,记为A * B 。新矩阵元素定义为矩阵A、B对应元素的乘积(A * B)ij = aij.bij

例子:


(3)Kronecker product(克罗内克积)

Kronecker积是两个任意大小矩阵间的运算,表示为 A x B。如果A是一个 m x n 的矩阵,而B是一个 p x q 的矩阵,克罗内克积则是一个 mp x nq 的矩阵。克罗内克积也称为直积或张量积,以德国数学家利奥波德·克罗内克命名。

例子:


7、封闭解(Closed-form solution)、解析解(Analytical solution)、数值解(Numerical solution)释义

解析解(Analytical solution) 就是根据严格的公式推导,给出任意的自变量就可以求出其因变量,也就是问题的解,然后可以利用这些公式计算相应的问题。所谓的解析解是一种包含分式、三角函数、指数、对数甚至无限级数等基本函数的解的形式。用来求得解析解的方法称为解析法(Analytical techniques),解析法即是常见的微积分技巧,例如分离变量法等。解析解是一个封闭形式(Closed-form) 的函数,因此对任一自变量,我们皆可将其带入解析函数求得正确的因变量。因此,解析解也被称为封闭解(Closed-form solution)。

数值解(Numerical solution) 是采用某种计算方法,如有限元法, 数值逼近法,插值法等得到的解。别人只能利用数值计算的结果,而不能随意给出自变量并求出计算值。当无法藉由微积分技巧求得解析解时,这时便只能利用数值分析的方式来求得其数值解了。在数值分析的过程中,首先会将原方程加以简化,以利于后来的数值分析。例如,会先将微分符号改为差分(微分的离散形式)符号等,然后再用传统的代数方法将原方程改写成另一种方便求解的形式。这时的求解步骤就是将一自变量带入,求得因变量的近似解,因此利用此方法所求得的因变量为一个个离散的数值,不像解析解为一连续的分布,而且因为经过上述简化的操作,其正确性也不如解析法可靠。

简而言之,解析解就是给出解的具体函数形式,从解的表达式中就可以算出任何对应值;数值解就是用数值方法求出近似解,给出一系列对应的自变量和解。

8、酉矩阵

酉矩阵又称为幺正矩阵,若一n行n列的复数矩阵U满足:

其中,
UH为
U的 共轭转置
En为
n阶单位矩阵,则
U称为酉矩阵。

一个简单的充分必要判别准则是:
或者说,酉矩阵的共轭转置和它的 逆矩阵相等。

酉矩阵的相关性质:
设有矩阵
A,B,则
(1)若
A是酉矩阵,则
A的 逆矩阵也是酉矩阵;
(2)若
A,B是酉矩阵,则
A*B和
B*A也是酉矩阵;
(3)若
A是酉矩阵,则
det(A)=1  (det(A)代表A的行列式|A|);
(4)
A是酉矩阵的 充分必要条件是,它的
n个 列向量是两两正交的单位向量。

9、正交向量


“正交向量”是一个数学术语,指点积为零的两个或多个向量。两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β。

正交向量组是一组非零的两两正交(即内积为0)的向量构成的向量组。
正交矩阵A是满足 AA^T = A^TA = E 的方阵 (这是定义)。
A是正交矩阵的充分必要条件是:A的列向量组是正交向量组,且列向量的长度都是1。







  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值