关闭

异或^运算的应用

标签: 异或异或应用
152人阅读 评论(0) 收藏 举报
分类:

1.异或运算

      关于异或,有两种计算。一是逻辑异或,一是按位异或。所谓逻辑异或就是运算数是true或者false。比如p1=true,p2=true,p1^p2。

      按位异或则是将变量转化为二进制,每一位分别异或。相同为0,不同为1。

      按位运算如&、|、^优先级位于关系运算符之后,逻辑运算符之前。

      好像不经常强调逻辑异或和按位异或,因为两者就是一个运算符表示。如逻辑&&和按位&,逻辑||按位|我们很容易分清。但是两者也没有本质的区别,只是两种分类而已。

2.异或的应用

例一:不使用其他变量实现a、b值的交换

下面三句即可解决:

a=a^b;    //此时a=a^b

b=a^b;    //此时b=a^b^b=a

a=a^b;    //此时a=a^b^a=b


这主要利用了异或的特性,两个相同的数异或为0,不同的数按位异或肯定不为0。这里的意思是不同的数按位异或肯定在某位异或时结果为1。如果结果中某位为1,则二进制转化为十进制肯定不为0。

由此,引出例二:

数组中的数除了有两个数出现一次,其他数都成对出现。怎样最快找到这两个只出现一次的数字呢?

其他数成对出现是个契机,想到异或便是法宝。

我们将数组的元素从头到尾异或,相同的数在异或的过程中必然抵消为0,最终的异或结果即为两个不同的数异或的结果。异或结果不为0,某位为1。说明这两个不同的数在异或结果为1的这位上不同。这样找到结果中为1的位,根据这位为1就能将数组中两个唯一只有一个数字分开异或,最终的结果就可以得到这两个唯一的数字了。

3.异或运算的更多应用

      比如格雷码、奇偶分频等更多应用请深入了解。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:85651次
    • 积分:2588
    • 等级:
    • 排名:第14137名
    • 原创:173篇
    • 转载:30篇
    • 译文:1篇
    • 评论:52条
    博客专栏
    最新评论
    联系信息
    QQ:1398037856 邮箱:yutianxin17@163.com