LeetCode 4 - Median of Two Sorted Arrays

Median of Two Sorted Arrays

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

My O(m+n) Code

class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int totalSize = nums1.size()+nums2.size();
vector<int> nums;

int minNumber;
int i = 0, j = 0;
while (i < nums1.size() && j < nums2.size())
{
minNumber = min(nums1[i], nums2[j]);
//cout << "i: " << i << " j: " << j << endl;
//cout << "minNumber: " << minNumber << endl;
for (; i < nums1.size(); i++)
{
if (nums1[i] == minNumber)
{
//cout << "nums1[" << i << "]: " << nums1[i] << endl;
nums.push_back(nums1[i]);
}
else
{
break;
}
}

for (; j < nums2.size(); j++)
{
if (nums2[j] == minNumber)
{
//cout << "nums2[" << j << "]: " << nums2[j] << endl;
nums.push_back(nums2[j]);
}
else
{
break;
}
}
}

if (i < nums1.size())
for (; i < nums1.size(); i++)
nums.push_back(nums1[i]);

if (j < nums2.size())
for (; j < nums2.size(); j++)
nums.push_back(nums2[j]);

/*
cout << "nums: ";
for (int k = 0; k < totalSize; k++)
cout << nums[k] << " ";
cout << endl;
*/

double median;
if (totalSize % 2 == 1)
median = nums[(totalSize-1)/2];
else
median = 0.5 * (nums[(totalSize-1)/2] + nums[(totalSize-1)/2 + 1]);

return median;
}
};
Runtime: 48 ms

My O(log(min(m,n))) Code

class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size();
int n = nums2.size();
if (m > n)
return findMedianSortedArrays(nums2, nums1);

int start = 0, end = m;
int i, j;
while (start <= end)
{
i = (start+end)/2;
j = (m+n+1)/2 - i;
cout << "start: " << start << " end: " << end
<< " i: " << i << " j: " << j << endl;

if (i == 0 || j == n || nums1[i - 1] <= nums2[j])
if (j == 0 || i == m || nums1[i] >= nums2[j-1])
break;
else
start = i + 1;
else
end = i - 1;
};

int maxNum;
if (i == 0)
maxNum = nums2[j-1];
else if (j == 0)
maxNum = nums1[i-1];
else
maxNum = max(nums1[i-1], nums2[j-1]);

int minNum;
if (i == m)
minNum = nums2[j];
else if (j == n)
minNum = nums1[i];
else
minNum = min(nums1[i], nums2[j]);

double median;
if (i+j == (m-i)+(n-j))
median = 0.5*(minNum+maxNum);
else
median = maxNum;

return median;
}
};
Runtime: 44 ms

Explanation of O(log(min(m, n))) Code

Given a sorted array A with length m, we can split it into two part:

{ A[0], A[1], ... , A[i - 1] } | { A[i], A[i + 1], ... , A[m - 1] }


All elements in right part are greater than elements in left part.

The left part has "i" elements, and right part has "m - i" elements.

There are "m + 1" kinds of splits. (i = 0 ~ m)

When i = 0, the left part has "0" elements, right part has "m" elements.

When i = m, the left part has "m" elements, right part has "0" elements.

For array B, we can split it with the same way:

{ B[0], B[1], ... , B[j - 1] } | { B[j], B[j + 1], ... , B[n - 1] }


The left part has "j" elements, and right part has "n - j" elements.

Put A's left part and B's left part into one set. (Let's name this set "LeftPart")

Put A's right part and B's right part into one set. (Let's name this set"RightPart")

            LeftPart           |            RightPart
{ A[0], A[1], ... , A[i - 1] } | { A[i], A[i + 1], ... , A[m - 1] }
{ B[0], B[1], ... , B[j - 1] } | { B[j], B[j + 1], ... , B[n - 1] }


If we can ensure:

 1) LeftPart's length == RightPart's length (or RightPart's length + 1)

2) All elements in RightPart are greater than elements in LeftPart.

Then we split all elements in {A, B} into two parts with eqaul length, and one part is

always greater than the other part. Then the median can be easily found.

To ensure these two condition, we just need to ensure:

 (1) i + j == m - i + n - j (or: m - i + n - j + 1)

if n >= m, we just need to set:

i = 0 ~ m, j = (m + n + 1) / 2 - i

(2) B[j - 1] <= A[i] and A[i - 1] <= B[j]

considering edge values, we need to ensure:

(j == 0 or i == m or B[j - 1] <= A[i]) and

(i == 0 or j == n or A[i - 1] <= B[j])


So, all we need to do is:

 Search i from 0 to m, to find an object "i" to meet condition (1) and (2) above.


And we can do this search by binary search. How?

If B[j0 - 1] > A[i0], then the object "ix" can't be in [0, i0]. Why?

 Because if ix < i0, then jx = (m + n + 1) / 2 - ix > j0,

then B[jx - 1] >= B[j0 - 1] > A[i0] >= A[ix]. This violates

the condition (2). So ix can't be less than i0.


And if A[i0 - 1] > B[j0], then the object "ix" can't be in [i0, m].

So we can do the binary search following steps described below:

1. set imin, imax = 0, m, then start searching in [imin, imax]

2. i = (imin + imax) / 2; j = (m + n + 1) / 2 - i

3. if B[j - 1] > A[i]: continue searching in [i + 1, imax]
elif A[i - 1] > B[j]: continue searching in [imin, i - 1]
else: bingo! this is our object "i"


When the object i is found, the median is:

max(A[i - 1], B[j - 1]) (when m + n is odd)

or (max(A[i - 1], B[j - 1]) + min(A[i], B[j])) / 2 (when m + n is even)
• 本文已收录于以下专栏：

《LeetBook》leetcode题解(4): Median of Two Sorted Arrays[H]——两个有序数组中值问题

004. Median of Two Sorted Arrays[H]Median of Two Sorted ArraysH 题目 分析 思路1 思路2 预备知识 先解释下割 双数组找第k个元素 我...
• hk2291976
• 2016年04月09日 21:24
• 2724

leetcode之 median of two sorted arrays

• yutianzuijin
• 2013年09月10日 00:15
• 78607

leetcode: 4. Median of Two Sorted Arrays (java)

• j754379117
• 2016年06月20日 20:44
• 561

leetcode04-Median of Two Sorted Arrays-python

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two...
• summerdj
• 2016年03月31日 15:11
• 788

LeetCode（4）Median of Two Sorted Arrays

• fly_yr
• 2015年08月22日 20:35
• 1213

leetcode之Median of Two Sorted Arrays问题

• xu2645318400
• 2017年06月29日 18:49
• 170

两个有序数组的中位数Median of Two Sorted Arrays（很重要）

https://leetcode.com/problems/median-of-two-sorted-arrays/ 对于一个长度为n的已排序数列a，若n为奇数，中位数为a[n / 2 + 1]...
• gao1440156051
• 2016年06月21日 11:11
• 3712

LeetCode 第二题，Median of Two Sorted Arrays

• hu1020935219
• 2014年08月02日 17:18
• 2282

Median of Two Sorted Arrays 两个有序数组的中位数@LeetCode

• hellobinfeng
• 2013年12月16日 13:52
• 4685

Leetcode第四题_Median of Two Sorted Arrays

Median of Two Sorted Arrays There are two sorted arrays nums1 and nums2 of size m and n respectively...
• bigevil
• 2015年05月11日 20:19
• 464

举报原因： 您举报文章：LeetCode 4 - Median of Two Sorted Arrays 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)