RMQ POJ3264

转载 2012年03月21日 22:49:17

RMQ(Range Minimum/Maximum Query)问题:
   RMQ问题是求给定区间中的最值问题。当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的算法效率不够。可以用线段树将算法优化到O(logn)(在线段树中保存线段的最值)。不过,Sparse_Table算法才是最好的:它可以在O(nlogn)的预处理以后实现O(1)的查询效率。下面把Sparse Table算法分成预处理和查询两部分来说明(以求最小值为例)。
预处理:
预处理使用DP的思想,f(i, j)表示[i, i+2^j - 1]区间中的最小值,我们可以开辟一个数组专门来保存f(i, j)的值。
例如,f(0, 0)表示[0,0]之间的最小值,就是num[0], f(0, 2)表示[0, 3]之间的最小值, f(2, 4)表示[2, 17]之间的最小值
注意, 因为f(i, j)可以由f(i, j - 1)和f(i+2^(j-1), j-1)导出, 而递推的初值(所有的f(i, 0) = i)都是已知的
所以我们可以采用自底向上的算法递推地给出所有符合条件的f(i, j)的值。

查询:
假设要查询从m到n这一段的最小值, 那么我们先求出一个最大的k, 使得k满足2^k <(n - m + 1).
于是我们就可以把[m, n]分成两个(部分重叠的)长度为2^k的区间: [m, m+2^k-1], [n-2^k+1, n];
而我们之前已经求出了f(m, k)为[m, m+2^k-1]的最小值, f(n-2^k+1, k)为[n-2^k+1, n]的最小值
我们只要返回其中更小的那个, 就是我们想要的答案, 这个算法的时间复杂度是O(1)的.
例如, rmq(0, 11) = min(f(0, 3), f(4, 3))
由此我们要注意的是预处理f(i,j)中的j值只需要计算log(n+1)/log(2)即可,而i值我们也只需要计算到n-2^k+1即可。

http://162.105.81.212/JudgeOnline/problem?id=3264
经典的RMQ题  

#include <iostream>
#include <string>
#include <math.h>
using namespace std;

#define maxs( a , b ) a>b?a:b
#define mins( a , b ) a>b?b:a
const int MAX_N = 50005;

int d[MAX_N];
int dpmin[MAX_N][20];
int dpmax[MAX_N][20];
int n;

void create_Dpmin(){
     int i , j;
     for( i = 1 ; i <= n ; i++ )
          dpmin[i][0] = d[i];
     for( j = 1 ; j <= log((double)(n+1))/log(2.0) ; j++ ){
          for( i = 1 ; i+(1<<j)-1 <= n ; i++ ){
               dpmin[i][j] = mins( dpmin[i][j-1] , dpmin[i+(1<<(j-1))][j-1] );   
          }
     }    
}
void create_Dpmax(){
     int i , j;
     for( i = 1 ; i <= n ; i++ )
          dpmax[i][0] = d[i];
     for( j = 1 ; j <= log((double)(n+1))/log(2.0) ; j++ ){
          for( i = 1 ; i+(1<<j)-1 <= n ; i++ ){
               dpmax[i][j] = maxs( dpmax[i][j-1] , dpmax[i+(1<<(j-1))][j-1] );   
          }
     }    
}

int getmax( int a , int b ){
    int k = (int)(log((double)(b-a+1))/log(2.0));
    return maxs( dpmax[a][k] , dpmax[b-(1<<k)+1][k] );   
}

int getmin( int a , int b ){
    int k = (int)(log((double)(b-a+1))/log(2.0));
    return mins( dpmin[a][k] , dpmin[b-(1<<k)+1][k] );   
}
void Init()
{
     create_Dpmin();
     create_Dpmax();    
}

int main()
{  
    freopen( "in.txt" , "r" , stdin );
    int i , m , a , b;
    scanf("%d%d",&n,&m);
    for( i = 1 ; i <= n ; i++ ){
           scanf("%d",&d[i]);
    }
    Init();
    while( m-- ){
           scanf("%d%d",&a,&b);    
           printf("%d\n",getmax(a,b)-getmin(a,b)); 
    }  
    return 0;   
}

 


RMQ poj3264

RMQ(Range Minimum/Maximum Query)问题: RMQ问题是求给定区间中的最值问题。当然,最简单的算法是O(n)的, 但是对于查询次数很多(设置多大100万次),O(n)的...
  • vegetable_bird_001
  • vegetable_bird_001
  • 2013年03月25日 18:58
  • 413

POJ3264/RMQ

题目链接/* 询问一段区间内的元素差值最大是多少,用RMQ维护一个最大值和一个最小值,相减即可。 */ #include #include #include using namespace std; ...
  • M___er
  • M___er
  • 2016年08月29日 13:38
  • 278

poj3264(RMQ)

多组输入输出,多组询问(l,r)的最大值-最小值 无需维护,所以考虑倍增 F[j][i]表示从第i个数起连续2^j个数中的最大值 想想对于一个size为8的数列求RMQMAX(3,7)我们是...
  • CSDN_Liu_Yiming
  • CSDN_Liu_Yiming
  • 2016年11月14日 22:32
  • 174

rmq模板(poj3264验证)

搜索不收藏,线段树方法不收藏,只收藏st算法,这个算法和线段树差不多,建树和建dp数组的时间复杂度都是n*log(n) 不同的地方就是查找,线段树查找的时间复杂度是n*log(n),st算法是o(1...
  • bochuan007
  • bochuan007
  • 2011年09月19日 04:34
  • 667

POJ3264 RMQ问题

虽然早知道st(Sparse Table)算法,今天第一次动手写,事无巨细,姑且记录一下。朴素的离线做法是进行n*n次的预处理,生成所有(i,j)对的最小值,保存起来,查询只需O(1)。st做法则是借...
  • jollyjumper
  • jollyjumper
  • 2010年03月27日 00:34
  • 929

poj3264 Balanced Lineup(RMQ)

poj3264题目有一堆牛,牛有身高,求一个区间里最高牛和最低牛身高之差。思路很裸的题,可做模版。代码#include #include #include #include #include ...
  • pibaixinghei
  • pibaixinghei
  • 2016年08月13日 16:14
  • 75

poj3264 RMQ模板/线段树

题意: N头牛,Q条询问,每次询问i-j区间最高和最低的牛的高度差。 For the daily milking, Farmer John’s N cows (1 ≤ N ≤ 50,000) alwa...
  • qq_33132383
  • qq_33132383
  • 2017年04月04日 12:59
  • 106

RMQ线段树(poj3264)

题意是求出数组某一段的最大值和最小值。 mmax[i][j]表示[i, i+2^j - 1]区间中的最大值。 #include #include #include #incl...
  • u013694972
  • u013694972
  • 2014年03月01日 21:30
  • 816

POJ3264 Balanced Lineup(RMQ)

题目点我点我点我 题目大意:有n头奶牛,给出他们的身高,查询区间L和R间最大身高与最小身高之差。 解题思路:刚学了RMQ,裸的模版题,也可以用线段树做。 /* *****...
  • L954688947
  • L954688947
  • 2016年07月16日 09:53
  • 144

经典RMQ(poj3264)

题意:随机访问任意区间的极值; ST算法:DP预处理复杂度O(nlogn);以后每次询问复杂度为O(1); (F[i,j]表示从i位置开始,往右2^j个元素中的极值。动规方程F[i,j]=max(F[...
  • xiefubao
  • xiefubao
  • 2014年01月16日 16:38
  • 400
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:RMQ POJ3264
举报原因:
原因补充:

(最多只允许输入30个字)