RMQ POJ3264

转载 2012年03月21日 22:49:17

RMQ(Range Minimum/Maximum Query)问题:
   RMQ问题是求给定区间中的最值问题。当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的算法效率不够。可以用线段树将算法优化到O(logn)(在线段树中保存线段的最值)。不过,Sparse_Table算法才是最好的:它可以在O(nlogn)的预处理以后实现O(1)的查询效率。下面把Sparse Table算法分成预处理和查询两部分来说明(以求最小值为例)。
预处理:
预处理使用DP的思想,f(i, j)表示[i, i+2^j - 1]区间中的最小值,我们可以开辟一个数组专门来保存f(i, j)的值。
例如,f(0, 0)表示[0,0]之间的最小值,就是num[0], f(0, 2)表示[0, 3]之间的最小值, f(2, 4)表示[2, 17]之间的最小值
注意, 因为f(i, j)可以由f(i, j - 1)和f(i+2^(j-1), j-1)导出, 而递推的初值(所有的f(i, 0) = i)都是已知的
所以我们可以采用自底向上的算法递推地给出所有符合条件的f(i, j)的值。

查询:
假设要查询从m到n这一段的最小值, 那么我们先求出一个最大的k, 使得k满足2^k <(n - m + 1).
于是我们就可以把[m, n]分成两个(部分重叠的)长度为2^k的区间: [m, m+2^k-1], [n-2^k+1, n];
而我们之前已经求出了f(m, k)为[m, m+2^k-1]的最小值, f(n-2^k+1, k)为[n-2^k+1, n]的最小值
我们只要返回其中更小的那个, 就是我们想要的答案, 这个算法的时间复杂度是O(1)的.
例如, rmq(0, 11) = min(f(0, 3), f(4, 3))
由此我们要注意的是预处理f(i,j)中的j值只需要计算log(n+1)/log(2)即可,而i值我们也只需要计算到n-2^k+1即可。

http://162.105.81.212/JudgeOnline/problem?id=3264
经典的RMQ题  

#include <iostream>
#include <string>
#include <math.h>
using namespace std;

#define maxs( a , b ) a>b?a:b
#define mins( a , b ) a>b?b:a
const int MAX_N = 50005;

int d[MAX_N];
int dpmin[MAX_N][20];
int dpmax[MAX_N][20];
int n;

void create_Dpmin(){
     int i , j;
     for( i = 1 ; i <= n ; i++ )
          dpmin[i][0] = d[i];
     for( j = 1 ; j <= log((double)(n+1))/log(2.0) ; j++ ){
          for( i = 1 ; i+(1<<j)-1 <= n ; i++ ){
               dpmin[i][j] = mins( dpmin[i][j-1] , dpmin[i+(1<<(j-1))][j-1] );   
          }
     }    
}
void create_Dpmax(){
     int i , j;
     for( i = 1 ; i <= n ; i++ )
          dpmax[i][0] = d[i];
     for( j = 1 ; j <= log((double)(n+1))/log(2.0) ; j++ ){
          for( i = 1 ; i+(1<<j)-1 <= n ; i++ ){
               dpmax[i][j] = maxs( dpmax[i][j-1] , dpmax[i+(1<<(j-1))][j-1] );   
          }
     }    
}

int getmax( int a , int b ){
    int k = (int)(log((double)(b-a+1))/log(2.0));
    return maxs( dpmax[a][k] , dpmax[b-(1<<k)+1][k] );   
}

int getmin( int a , int b ){
    int k = (int)(log((double)(b-a+1))/log(2.0));
    return mins( dpmin[a][k] , dpmin[b-(1<<k)+1][k] );   
}
void Init()
{
     create_Dpmin();
     create_Dpmax();    
}

int main()
{  
    freopen( "in.txt" , "r" , stdin );
    int i , m , a , b;
    scanf("%d%d",&n,&m);
    for( i = 1 ; i <= n ; i++ ){
           scanf("%d",&d[i]);
    }
    Init();
    while( m-- ){
           scanf("%d%d",&a,&b);    
           printf("%d\n",getmax(a,b)-getmin(a,b)); 
    }  
    return 0;   
}

 


相关文章推荐

poj 3264 Balanced Lineup(RMQ求区间最值)

Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 29631   Accepted:...

POJ-3264 Balanced Lineup【RMQ】

题目链接:http://poj.org/problem?id=3264 题目大意: 一个农夫有N头牛,每头牛的高度不同,我们需要找出最高的牛和最低的牛的高度差。 解题思路: 我是用RMQ写的。...

RMQ的ST算法学习小记 Poj 3264 Balanced Lineup

RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j 主要方法及复杂度(处理复杂度和查询复杂度)如下: 1.线...

POJ 3264 Balanced Lineup (RMQ)

Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same ...

poj 3264 Balanced Lineup (RMQ))

Balanced Lineup Time Limit:5000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Sub...

poj3264(RMQ问题的线段树实现方法)

题目大意:第一行输入两个整数n,m;第二行输入一个n个数的序列,第三行开始的m行,每行两个数a,b,分别表示一个操作,对于每个操作,要求输出该区间的最小值和最大值。#include #include ...

线段树 ST算法 RMQ poj 3264 Balanced Lineup 解题报告

线段树 ST算法 RMQ poj 3264 Balanced Lineup 解题报告

poj 3264RMQ

Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same...

poj 3264 Balanced Lineup (简单 RMQ )

Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 29174   Accepted:...

poj 3264RMQ问题(线段树,ST算法)

Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34766 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)