关闭

【codeforces】(等差数列及等比数列求和)

97人阅读 评论(0) 收藏 举报
分类:

Description

In this problem you are to calculate the sum of all integers from 1 to n, but you should take all powers of two with minus in the sum.

For example, for n = 4 the sum is equal to  - 1 - 2 + 3 - 4 =  - 4, because 12 and 4 are 2021 and 22 respectively.

Calculate the answer for t values of n.

Input

The first line of the input contains a single integer t (1 ≤ t ≤ 100) — the number of values of n to be processed.

Each of next t lines contains a single integer n (1 ≤ n ≤ 109).

Output

Print the requested sum for each of t integers n given in the input.

Sample Input

Input
2
4
1000000000
Output
-4
499999998352516354

Hint

The answer for the first sample is explained in the statement.

思路:先求从1到n的等差数列的和(d=1)sum1,在求从1到m等比数列的和(q=1)(m<=2^n)sum2;

答案即为sum1-2*sum2;

#include<stdio.h>
#include<string.h>
#include<math.h>
int main()
{
	int n;
	scanf("%d",&n);
	while(n--)
	{
		int i;
		__int64 m,sum,sum1=0,sum2=0;
		scanf("%I64d",&m);
	    sum1=(m+1)*m/2;
	    int l;
		for(i=0;;i++)
		{
			if(pow(2,i)==m)
			{
				l=i;
				break;
			}
			 if(pow(2,i)>m)
			{
				l=i-1;
				break;
			}
		}
		sum2=pow(2,l+1)-1;
		sum=sum1-2*sum2;
		printf("%I64d\n",sum);
	}
 } 


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:18115次
    • 积分:1877
    • 等级:
    • 排名:千里之外
    • 原创:181篇
    • 转载:0篇
    • 译文:0篇
    • 评论:3条
    最新评论