Number of Containers(数学)

转载 2015年07月07日 23:42:16

Number of Containers


Time Limit: 1 Second Memory Limit: 32768 KB

For two integers m and k, k is said to be a container of m if k is divisible by m. Given 2 positive integers n and m (m < n), the function f(n, m) is defined to be the number of containers of m which are also no greater than n. For example, f(5, 1)=4, f(8, 2)=3, f(7, 3)=1, f(5, 4)=0...

Let us define another function F(n) by the following equation:

Nowgiven a positive integer n, you are supposed to calculate the value ofF(n).

 

Input

There are multiple test cases. The first line of input contains an integerT(T<=200) indicating the number of test cases. Then Ttest cases follow.

Each test case contains a positive integer n (0 < n <=2000000000) in a single line.

Output

For each test case, output the result F(n) in a single line.

Sample Input

 

2
1
4

 

Sample Output

 

0
4




表示一开始题目都看不懂。。。

讲的是n/m的值到0之间有几个值!然后f(n)就是累加,,,啊!一直没懂;
eg:f(5, 1)=4,即5/1=5,5-1=4;
f(8, 2)=3,即8/2=4,4-1=3;
f(7, 3)=1,即7/3=2,2-1=1;
f(5, 4)=0,即5/4=1,1-1=0;


//求n/1+n/2+….+n/n-n的值


画图 可以用 横坐标表示i 从该点画一条垂直的线 这条线上的所有整数点的个数就是 n/i

那么n/1+n/2+n/3+……n/(n-2)+n/(n-1)+n/n 可以表示为i*(n/i)=n这条线

答案就是这条线与坐标轴围成的面积内的整数点的个数

画一条x=y的线与x*y=n相交 可以知道 面积关于x=y对称

我们求n/1+n/2+n/3+…… 只求到k=sqrt(n)处(1个梯形) 之后乘以2 (得到2个梯形的面积 其中有一个正方形的区域是重复的) 减去重复的区域k*k个 即可

 

 

ps:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3216

 n=x*y坐标上表示应为双曲线。画图后依然是这样。

 

#include<stdio.h>
#include<math.h>
int main()
{
int T;
long long n,sum,i,j,k;
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
k=(long long)sqrt(n+1);
sum=0;
for(i=1;i<=k;i++)
sum+=n/i;
sum=sum*2-k*k-n;
printf("%lld\n",sum);
}
return 0;
}

zoj 3175 Number of Containers(数论~)

算是数论吧。 = = 就是求i从1到n的 n/i-1的累和。 开始我用最简单的累和,算20Y要好几秒,肯定过不去,也想了到n的平方根,思路是对的,可是没想明白 = =就去看别人题解了,破习惯。 结果人...
  • zxy_snow
  • zxy_snow
  • 2011年01月23日 18:38
  • 1778

ZOJ 3175 Number of Containers 【数学图像性质】

传送门 // 按照题意出发我们可以很容易的推导出最后求 (n/1 + n/2 + …. + n/n) - n.那么如何求了,暴力肯定不行, 又是一个调和级数无通项, 所以只有从函数图像入手...
  • Anxdada
  • Anxdada
  • 2018年01月26日 10:30
  • 59

从Happy num所想到的几个问题

首先,前几天在leetcode上刷到了一题,做的时候边发现这个难度为easy的题目实际上是非常有意思的。先把题目放上来: 【题目翻译】我们把满足如下性质的自然数nn称为快乐数:以19为例,若12...
  • qq_23997101
  • qq_23997101
  • 2015年10月11日 12:29
  • 607

ZOJ.3175 Number of Containers【数学问题】 2015/10/11

Number of Containers Time Limit: 1 Second      Memory Limit: 32768 KB For two integers m ...
  • hdweilao
  • hdweilao
  • 2015年10月11日 16:52
  • 227

FZU2268 Cutting Game(数学,规律)(第七届福建省大学生程序设计竞赛)

题目: Problem 2268 Cutting Game Accept: 10    Submit: 12 Time Limit: 1000 mSec    Memory Limi...
  • riba2534
  • riba2534
  • 2017年07月18日 21:47
  • 496

进入MAC下的Containers文件夹

~/Library/Containers/
  • xuwenwen_2013
  • xuwenwen_2013
  • 2017年11月08日 11:47
  • 524

ZOJ - 3175 Number of Containers

不知道怎么写: 这么大的数据量线性肯定不行的。这是我参考的链接:http://hi.baidu.com/auhsr2346/blog/item/e35b5c8cdff76e1ab31bba86.htm...
  • zdsfwy
  • zdsfwy
  • 2011年04月10日 21:12
  • 908

Intel Clear Containers 3.0发布

Clear Containers 团队一直在为打造下一代的 Clear Containers 努力, 并终于迎来了 Clear Containers 3.0 版本的发布!这次发布是一次架构的换代,在硬...
  • M2l0ZgSsVc7r69eFdTj
  • M2l0ZgSsVc7r69eFdTj
  • 2017年09月23日 00:00
  • 189

Xcode7发布版本遇到的问题

1. Xcode7 真机调试 遇到 no identity found 如何解决 > 把那个 bundle identity 改掉 ,Xcode 这里就会出现一个警告,然后点击下面的FIx issue...
  • amoslyc
  • amoslyc
  • 2016年08月13日 10:08
  • 1241

iCloud快速部署

Enabling CloudKit in Your App CloudKit is an app service available only to apps distributed through...
  • safiri
  • safiri
  • 2014年12月26日 18:48
  • 1014
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Number of Containers(数学)
举报原因:
原因补充:

(最多只允许输入30个字)