关闭

[置顶] Tensorflow在Android客户端上的应用(环境搭建篇)

下载NDK:下载地址 下载Bazel:下载地址,Bazel是TensorFlow主要的构建系统。...
阅读(36) 评论(0)

[置顶] 深度学习之从零带你入门(扫盲篇)

一、基本概念扫盲 人工智能、机器学习、神经网络、深度学习这些字眼相信一些人都见过,但是并不知道他们之间的关系,这里本人整理相关资料后给出较为准确的定义。 这里大家先看如下一张图: 正如上图所示,人工智能指的是整个领域,它包含了机器学习这个概念,而深度学习则又包含在机器学习的概念范畴当中。三个概念在时间顺序上依次发展,逐渐细化和深入。 人工智能: 人工智能的范围是相当广的,智能...
阅读(76) 评论(0)

[置顶] 目前最全的机器学习知识结构图(11月1日更新)

机器学习、深度学习、python基础、数学基础、学习分类、项目构建流程、最常用的学习框架悉数列出 。 如有不足请留言补充,也可关注我微信号,留言即可。请大家扫描二维码关注我的微信公众号。本公众号每天均会推出机器学习精华资讯和学习教程。欢迎大家关注!...
阅读(38) 评论(0)

[置顶] 如何掌握多门编程语言

对的,我这里要讲的不是如何掌握一种程序语言,而是所有的……   很多编程初学者至今还在给我写信请教,问我该学习什么程序语言,怎么学习。由于我知道标题问题的答案,所以总感觉这个问题是如此“低级”,一直没来得及回复 ...
阅读(171) 评论(0)

[置顶] Kotlin特性与优点分析

Kotlin是JetBrains公司开发的。JetBrains实际上是开发IDES。例如IntelliJ和ReSharper。真正闪耀则是通过Kotlin,Kotlin是简洁和务实的,并且使得编码成为了令人满意和有效的体验。 尽管Kotlin可以编译JavaScript和机器码。但是我将会聚焦到最初的环境(JVM) 所以以下会给出几个你为什么需要切换到Kotlin语言开发的原因(没有先...
阅读(1261) 评论(0)

[置顶] Android技术积累汇总(7月19日更新)

这里先给大家一个我自建的移动技术交流群(181232816) 安卓,苹果,ReactNative 等主流移动开发均可进群交流,会多平台开发的朋友更适宜 一、AndroidAPI使用 二、Android组件使用 三、AndroidIDE使用(含gradle、studio) 四、Android打包发布 五、Android源码解析 六...
阅读(217) 评论(0)

[置顶] 用node.js搭建服务器,模拟返回json数据供客户端get,post请求使用

前言:最近在学习reactnative 技术,有了一定的js语言基础 ,听说node.js上手度不错,就试着搭建了个本地服务器,模拟返回json数据供客户端get,post请求使用,使用流程如下: 1:安装node 2:安装express   npm install express  —save 3:往interface目录下添加接口报文,如sysi...
阅读(991) 评论(0)

[置顶] 程序员优秀学习资料整理(不断更新中)

如果你发现自己陷入各种新技术、工具包围中,而纠结于该选择哪些学习,读读这篇文章,技术的执念。 综合资源 资源链接汇集 awesome - 各种主流语言的优秀项目汇集 :+1:lists - 资源集合的汇集awesome-resources - 开发资源总结awesome-github - 更好地使用GitHubfrontend-dev-bookmarks - Github上最火的...
阅读(254) 评论(0)

28个Github上最火的机器学习开源项目

1. TensorFlow  TensorFlow 是谷歌发布的第二代机器学习系统。据谷歌宣称,在部分基准测试中,TensorFlow的处理速度比第一代的DistBelief加快了2倍之多。  具体的讲,TensorFlow是一个利用数据流图(Data Flow Graphs)进行数值计算的开源软件库:图中的节点(Nodes)代表数学运算操作,同时图中的边(Edges)表示节点...
阅读(2553) 评论(0)

深度学习之pytjon的数据分析工具pandas

pandas模块为我们提供了非常多的描述性统计分析的指标函数,如总和、均值、最小值、最大值等,我们来具体看看这些函数: 1、随机生成三组数据 import numpy as np import pandas as pd np.random.seed(1234) d1 = pd.Series(2*np.random.normal(size = 100)+3) d2 = np.random....
阅读(14) 评论(0)

机器学习相关英文术语

机器学习相关术语(按首字母排序) 缩写 英语 汉语 A Activation Function 激活函数 Adversarial Networks 对抗网络 Affine Layer 仿射...
阅读(51) 评论(0)

机器学习之必知十大机器学习算法

本文先为初学者介绍了必知的十大机器学习(ML)算法,并且我们通过一些图解和实例生动地解释这些基本机器学习的概念。我们希望本文能为理解机器学习基本算法提供简单易读的入门概念。 机器学习模型 在《哈佛商业评论》发表「数据科学家是 21 世纪最性感的职业」之后,机器学习的研究广受关注。所以,对于初入机器学习领域的学习者,我们放出来一篇颇受欢迎的博文——《初学者必知的十大机...
阅读(44) 评论(0)

深度学习机器学习面试题(理论基础)

第一部分:深度学习 1、神经网络基础问题 (1)Backpropagation(要能推倒)    后向传播是在求解损失函数L对参数w求导时候用到的方法,目的是通过链式法则对参数进行一层一层的求导。这里重点强调:要将参数进行随机初始化而不是全部置0,否则所有隐层的数值都会与输入相关,这称为对称失效。  大致过程是: 首先前向传导计算出所有节点的激活值和输出值,  ...
阅读(49) 评论(0)

TensorFlow的训练模型在Android和Java的应用及调用

环境:Windows 7 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World"。就好比编程入门有Hello World,机器学习入门有MNIST。 MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片: 它也包含每一张图片对应的标签,告诉我们这个是数字几。比如,上面这四张图片的标签分别是5,0,4,1。 那我我们就将Te...
阅读(121) 评论(0)

Tensorflow快速入门

PART 01 Tensorflow简介 引言 实践深度学习肯定要至少学习并掌握一个深度学习框架。这里我们介绍一个最流行的深度学习框架:Tensorflow。Tensorflow是谷歌公司在2015年9月开源的一个深度学习框架。虽然我们称Tensorflow为一种深度学习框架,但是看看官网: 图1 Tensorflow官网界面 可以看到...
阅读(49) 评论(0)

深度学习之Python的可视化包 – Matplotlib

5.4 Python的可视化包 – Matplotlib Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型地2D图表和一些基本的3D图表。Matplotlib最早是为了可视化癫痫病人的脑皮层电图相关的信号而研发,因为在函数的设计上参考了MATLAB,所以叫做Matplotlib。Matplotlib首次发表于2007年,在开源和社区的推动下,现在在基于P...
阅读(33) 评论(0)

深度学习之Python的科学计算包 – Numpy

umpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架。 numpy在Linux下的安装已经在5.1.2中作为例子讲过,Windows下也可以通过pip,或者到下面...
阅读(53) 评论(0)

深度学习基础之Python语法

5.2.1 基本数据类型和运算 基本数据类型 Python中最基本的数据类型包括整型,浮点数,布尔值和字符串。类型是不需要声明的,比如: Python 12345a = 1       # 整数b = 1.2     # 浮点数c = True    # 布尔类型d = "False" # 字符...
阅读(40) 评论(0)

深度学习之数学基础(数值计算)

信息论是应用数学的一个分支,主要研究的是对一个信号能够提供信息的多少进行量化。如果说概率使我们能够做出不确定性的陈述以及在不确定性存在的情况下进行推理,那信息论就是使我们能够量化概率分布中不确定性的总量。 1948年,香农引入信息熵,将其定义为离散随机事件的出现概率。一个系统越是有序,信息熵就越低;反之,一个系统越是混乱,信息熵就越高。所以说,信息熵可以被认为是系统有序化程度的一个度量。 ...
阅读(58) 评论(0)

深度学习之数学基础(概率与统计)

3-1、为什么使用概率?  概率论是用于表示不确定性陈述的数学框架,即它是对事物不确定性的度量。 在人工智能领域,我们主要以两种方式来使用概率论。首先,概率法则告诉我们AI系统应该如何推理,所以我们设计一些算法来计算或者近似由概率论导出的表达式。其次,我们可以用概率和统计从理论上分析我们提出的AI系统的行为。 计算机科学的许多分支处理的对象都是完全确定的实体,但机器学习却大量...
阅读(91) 评论(0)

深度学习之数学基础(线性代数篇)

2-1、标量 一个标量就是一个单独的数,一般用小写的的变量名称表示。 2-2、向量 一个向量就是一列数,这些数是有序排列的。用过次序中的索引,我们可以确定每个单独的数。通常会赋予向量粗体的小写名称。当我们需要明确表示向量中的元素时,我们会将元素排 列成一个方括号包围的纵柱: 我们可以把向量看作空间中的点,每个元素是不同的坐标轴上的坐标。 2-3、矩阵 矩阵是二...
阅读(94) 评论(0)
199条 共14页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:64140次
    • 积分:1200
    • 等级:
    • 排名:千里之外
    • 原创:26篇
    • 转载:167篇
    • 译文:6篇
    • 评论:3条
    最新评论