机器学习数学原理(3)——生成型学习算法

机器学习数学原理(3)——生成型学习算法

在上一篇博文中我们通过广义线性模型导出了针对二分类的Sigmoid回归模型以及针对多项分类的Softmax回归模型,需要说明的是,这两种算法模型都属于判别学习算法,而这篇博文主要分析了与之区别的生成型学习算法生成型学习算法判别学习算法虽然在结论上有很多相同的地方(从后面的分析中我们甚至可以发现生成学习算法也可以导出Sigmoid回归模型!),但是他们两者之间依然存在着本质的不同。

1 生成型学习算法介绍

1.1 贝叶斯公式

在介绍生成型学习算法之前笔者首先介绍一下贝叶斯公式:

贝叶斯公式

这个公式不难理解,我们可以使用下面的图片来理解:

贝叶斯公式图示

从上图我们可以发现其实在整个概率空间求p(x)与p(y)的交集概率可以得到如下公式:

p(x|y)p(y)=p(y|x)p(x)

将p(x)除过去便成为了贝叶斯公式。

1.2 生成学习算法

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
梯度下降算法机器学习中一种广泛应用的最优化算法,其主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。梯度下降算法的原理可以从一个下山的场景开始理解。算法的基本思想是沿着目标函数梯度的方向更新参数值,以期望达到目标函数的最小值。 在机器学习中,梯度下降算法常常用于求解损失函数的最小值。在简单的线性回归中,我们可以使用最小二乘法来求解损失函数的最小值。然而,在绝大多数情况下,损失函数是非线性的且复杂。因此,梯度下降算法机器学习领域得到了广泛的应用。实际上,许多优秀的算法都是在梯度下降算法的启发下诞生的,例如AdaGrad、RMSProp、Momentum等等。 梯度下降算法的核心思想是通过计算目标函数的梯度来确定参数更新的方向。梯度表示了函数在某一点上的变化率,沿着梯度的方向可以使函数值快速减小。因此,梯度下降算法沿着梯度的反方向更新参数值,朝着目标函数的最小值靠近。算法的迭代过程会持续更新参数值,直到收敛到最小值或达到停止条件。 在实际应用中,为了提高算法的效率和准确性,通常会对梯度下降算法进行改进和优化。例如,可以使用学习率来控制参数值的更新步长,或者采用批量梯度下降来同时计算多个样本的梯度。这些改进可以帮助算法更快地收敛并找到更好的解。 总之,梯度下降算法是一种重要的最优化算法,在机器学习中被广泛应用。其原理是通过计算目标函数的梯度来更新参数值,以期望达到最小值。通过迭代的方式,梯度下降算法可以找到目标函数的最优解或者接近最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值