【数据结构】用模版实现大小堆、实现优先级队列,以及堆排序

原创 2016年05月30日 15:04:33

    一、用模版实现大小堆


    如果不用模版的话,写大小堆,就需要分别实现两次,但是应用模版的话问题就简单多了,我们只需要实现两个仿函数,Greater和Less就行了,仿函数就是用类实现一个()的重载就实现了仿函数。这个看下代码就能理解了。再设计参数的时候,需要把模版设计成模版的模版参数,因为要实现大小堆嘛!当我们实现好一个大堆或者小队的逻辑后只需要用模版接收的Greater或Less类定义一个变量,就能实现通用功能了。


template<typename T>
struct Less
{
    bool operator()(const T& l, const T& r)
    {
        return l < r;
    }
};

template<class T>
struct Greater
{
    bool operator()(const T& l, const T& r)
    {
        return l>r;
    }
};

template <class T,template<class> class compare = less>
class Heap
{
public:
    Heap()
    {}

    Heap(T* a,size_t size)
    {
        size_t index = 0;
        while (index < size)
        {
            _a.push_back(a[index]);
            index++;
        }

        for (int i = (_a.size() - 2) / 2; i >= 0; i--)
            _AdjustDown(i);
    }

    void push(const T& x)
    {
        _a.push_back(x);
        _AdjustUp(_a.size() -1);
    }

    void pop()
    {
        size_t size = _a.size();
        assert(size > 0);
        swap(_a[0], _a[size - 1]);
        _a.pop_back();
        size = _a.size();
        _AdjustDown(0);
    }

    size_t top()
    {
        assert(!_a.empty());

        return _a[0];
    }

    bool empty()
    {
        return _a.size() == 0;
    }

    size_t Size()
    {
        return _a.size();
    }

    void Print()
    {
        for (int i = 0; i < _a.size(); i++)
        {
            cout << _a[i] << " ";
        }
        cout << endl;
    }

protected:
    void _AdjustUp(int child)
    {
        int parent = (child - 1) / 2;
        compare<T> com;  //如果是大堆传过来就是用大堆的逻辑,小堆就实现小堆的逻辑
        while (child > 0)
        {
            //找出孩子中的最大孩子
            if (com(_a[child] , _a[parent]))
            {
                swap(_a[child], _a[parent]);
                child = parent;
                parent = (child - 1) / 2;
            }
            else
            {
                break;
            }
        }

    }

    void _AdjustDown(size_t parent)
    {
        size_t child = 2 * parent + 1;
        compare<T> com; //如果是大堆传过来就是用大堆的逻辑,小堆就实现小堆的逻辑
        while (child < _a.size())
        {
            //找出孩子中的最大孩子
            if (child + 1 < _a.size() && com(_a[child+1] ,_a[child]))
            {
                ++child;
            }
            //把
            if (com(_a[child] , _a[parent]))
            {
                swap(_a[parent], _a[child]);
                parent = child;
                child = child * 2 + 1;
            }
            else
            {
                break;
            }
        }

    }
protected:
    vector<T> _a;
};


   二、用模版实现优先级队列


前面实现了大小堆,这里我们可以使用适配器,直接调用大小堆,来实现优先级队列。


template<class T, template<class> class compare = Less>
class priorityQueue
{
private:
    Heap<T, compare> _hp; 
public:
    void push(const T& x)
    {
        _hp.push(x);
    }

    void pop()
    {
        _hp.pop();
    }

    T& Top()
    {
        return _hp.top();
    }

    void Print()
    {
        _hp.Print();
    }

};


    三、堆排序的实现


    堆排序的实现简单思路,(升序)先构造出来一个大堆,调整堆后,将堆头和最后一个数据交换,最大值就换到了数组的最后,然后在调整堆,但是size需要减少1,因为最大的已经调整到最后,如果再加上它调整又会回到堆头。

int*& HeapSort(int* a, size_t size)
{
    for (int i = (size - 2) / 2; i >= 0; i--)
    {
        _AdjustDown(a, size, i);
    }

    for (int i = 0; i < size; i++)
    {
        swap(a[0], a[size - i - 1]);
        _AdjustDown(a, size - i - 1, 0);
    }

    return a;
}


本文出自 “滴水” 博客,请务必保留此出处http://10740329.blog.51cto.com/10730329/1768172

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

[数据结构] 二叉堆,堆排序,优先级队列

前言最近在看算法导论中的第六章堆排序,忍不信手又痒了起来,利用零散时间,参照书里的思路,利用java实现了一些堆的基本操作,供小白参考。有时间会整理堆的介绍和一些性质,这事后话。我也是菜鸟一个,代码中...

[数据结构]用插入排序和选择排序的思想实现优先级队列

一、问题概述 优先级队列的定义:        优先级队列不同于普通的队列,普通的队列具有先进先出的原则,而优先级队列是选择优先级最高的先出队。那么,如何模拟实现优先级队列呢?在这里,我们将较大的...

堆、堆排序、优先级队列(c++实现)

到目前为止,我所知道的堆有两种,一是内存的一种,常见的用途就是动态内存分配了(在c/c++中就是这样),另一种是这里所要论述的一种数据结构。 一、堆 数据结构中的堆又叫二叉堆,顾名思义,我...

数据结构基础 之 二叉堆实现堆排序

堆实际上是一棵完全二叉树,也称二叉堆。本文首先对二叉堆的定义和相关概念给予阐述并针对堆排序图例给出算法单步演示,而后给出二叉堆以及堆排序的代码实现,文末结合实际代码实现给出算法要点分析。

数据结构之带优先级的队列(C语言实现)

数据结构之带优先级的队列(C语言实现)

《常见算法和数据结构》优先队列(3)——堆排序

堆排序1堆排序思想堆排序的思想很简单,就是利用了堆的优点,不断的找最大值,然后删除最大值,重复操作。 - 首先,要构造一个二叉堆出来,我们采用自底向上的思想。 做删除root的操作(但是不是真删除,...

Java数据结构——堆排序实现

package 排序; public class 堆排序 { public static void main(String[] args) { int[] array = {3,1,5,7,2...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)