Bloom Filter 原理及 Google BloomFilter

1. Bloom Filter简介

布隆过滤器 (Bloom Filter)是由Burton Howard Bloom于1970年提出,它是一种space efficient概率型数据结构,用于判断一个元素是否在集合中。在垃圾邮件过滤的黑白名单方法、爬虫(Crawler)的网址判重模块中等等经常被用到。哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的1/8或1/4的空间复杂度就能完成同样的问题

1.1 Bloom Filter特点

  1. 布隆过滤器可以插入元素,但不可以删除已有元素。
  2. Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。
  3. 其中的元素越多,false positive rate(误报率)越大,但是false negative (漏报)是不可能的。
  4. 因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。

2. 集合表示和元素查询

2.1 集合表示

下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为 0


这里写图片描述

为了表达 S=x1,x2,,xn 这样一个 n 个元素的集合,Bloom Filter使用 k 个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到 {1,,m} 的范围中。对任意一个元素 x ,第 i 个哈希函数映射的位置 hi(x) 就会被置为 11ik 。注意,如果一个位置多次被置为 1 ,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。


这里写图片描述

2.2 元素查询

在判断 y 是否属于这个集合时,我们对 y 应用 k 次哈希函数,如果所有 hi(y) 的位置都是 11ik ,那么我们就认为 y 是集合中的元素,否则就认为 y 不是集合中的元素。下图中 y1 就不是集合中的元素。 y2 或者属于这个集合,或者刚好是一个false positive


这里写图片描述


3. 错误率估计

前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面就来估计错误率的大小。在估计之前为了简化模型,我们假设 kn<m 。且各个哈希函数是完全随机的。当集合 S=x1,x2,,xn 的所有元素都被 k 个哈希函数映射到 m 位的位数组中时,这个位数组中某一位还是 0 的概率是:

p=(11m)kneknm(1)

其中 1/m 表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的), (11/m) 表示哈希一次没有选中这一位的概率。要把 S 完全映射到位数组中,需要做 kn 次哈希。某一位还是 0 意味着 kn 次哈希都没有选中它,因此这个概率就是 (11/m) kn 次方。令 p=eknm 是为了简化运算,这里用到了计算 e 时常用的近似:

limx(11m)x=e(2)

ρ 为位数组中 0 的比例,则 ρ 的数学期望 E(ρ)=p。在 ρ 已知的情况下,要求的错误率(false positive rate)为:

(1ρ)k(1p)k(1p)k(3)

(1ρ) 为位数组中 1 的比例,(1ρ)k 就表示 k 次哈希都刚好选中 1 的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。 p 只是 ρ 的数学期望,在实际中 ρ 的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明1位数组中 0 的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将 p p 代入上式中,得:

f=(1(11m)kn)k=(1p)k(5)

f=(1eknm)k=(1p)k(6)

相比 p f ,使用 p f 通常在分析中更为方便。


4. 最优的哈希函数个数

既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?
这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到 0 的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的 0 就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

先用 p f 进行计算。注意到 f=e(kln(1eknm)) ,我们令 g=kln(1eknm) ,只要让 g 取到最小,f 自然也取到最小。由于 p=eknm ,我们可以将 g 写成

g=kln(1p)=mnln(p)ln(1p)(7)

根据对称性法则可以很容易看出当 p=12 ,也就是 k=ln2mn 时, g 取得最小值。

在这种情况下,由公式 (6)可知,最小错误率 f=12k=12ln2mn(0.6185)mn 。另外,注意到 p 是位数组中某一位仍是 0 的概率,所以 p=12 对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

需要强调的一点是, p=12 时错误率最小这个结果并不依赖于近似值 p f 。同样对于 f=e(kln(1(11m)kn)) g=kln(1(11m)kn) p=(11m)kn ,我们可以将 g 写成

g=1nln(11m)ln(p)ln(1p)(8)

同样根据对称性法则可以得到当 p=12 时, g 取得最小值。


5. 位数组的大小

下面我们来看看,在不超过一定错误率的情况下,Bloom Filter至少需要多少位才能表示全集中任意 n 个元素的集合。假设全集中共有 u 个元素,允许的最大错误率为 ε ,下面我们来求位数组的位数 m

假设 X 为全集中任取 n 个元素的集合,F(X) 是表示 X 的位数组。那么对于集合 X 中任意一个元素 x ,在 s=F(X) 中查询 x 都能得到肯定的结果,即 s 能够接受 x 。显然,由于Bloom Filter引入了错误,s 能够接受的不仅仅是 X 中的元素,它还能够 接受ε(un)个false positive。因此,对于一个确定的位数组来说,它能够接受总共 n+ε(un) 个元素。在 n+ε(un) 个元素中, s 真正表示的只有其中 n 个,所以一个确定的位数组可以表示

Cnn+ε(un)(9)

个集合。 m 位的位数组共有 2m 个不同的组合,进而可以推出, m 位的位数组可以表示

2mCnn+ε(un)(10)

个集合。全集中 n 个元素的集合总共有

Cnu(11)

个,因此要让 m 位的位数组能够表示所有 n 个元素的集合,必须有

2mCnn+ε(un)Cnu(12)

即:

mlog2CnuCnn+ε(un)log2CnuCnεu(13)

上式中的近似前提是 n εu 相比很小,这也是实际情况中常常发生的,下面进一步简化:

CnuCnεu=====u!n!(un)!(εu)!n!(εun)!u!(εun)!(εu)!(un)!{u(u1)(u2)(un+1)(un)!}(εun)!(un)!{(εu)(εu1)(εu2)(εun+1)(εun)!}u(u1)(u2)(un+1)(εu)(εu1)(εu2)(εun+1)u(u1)(u2)(un+1)εnu(u1ε)(u2ε)(un1ε)1εn(14)

将公式 (14) 的结果带入公式 (13) ,即:
mlog2εn=nlog21ε(15)

根据上式,我们得出结论:在错误率不大于 ε 的情况下, m 至少要等于 nlog21ε 才能表示任意 n 个元素的集合。

上一小节中我们曾算出当 k=ln2mn时错误率 f 最小,这时 f=12k=12mnln2。现在令 fε ,可以推出

fε12mnln2εmnlog21εln2=nlog2elog21ε

这个结果比前面我们算得的下界 nlog21ε 大了 log2e1.44 倍。这说明在哈希函数的个数取到最优时,要让错误率不超过 ε m 至少需要取到最小值的 1.44 倍。


6. 总结

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter在时间空间这两个因素之外又引入了另一个因素:错误率。在使用Bloom Filter判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter通过允许少量的错误来节省大量的存储空间。

自从Burton Bloom在70年代提出Bloom Filter之后,Bloom Filter就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展,Bloom Filter在网络领域获得了新生,各种Bloom Filter变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现,Bloom Filter必将获得更大的发展。


【完】

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值